ion secretion
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 11)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Tamara Madacsy ◽  
Árpád Varga ◽  
Noémi Papp ◽  
Bálint Tél ◽  
Petra Pallagi ◽  
...  

Abstract Background and aims. Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes.Methods. Human and mouse pancreas and liver samples and ex vivo organoids were used to study ion secretion, intracellular signaling and protein expression and interaction. The effect of PMCA4 inhibition was analysed in a mouse model of alcohol-induced pancreatitis.Results. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice.Conclusion. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.


2021 ◽  
Vol 2021 ◽  
pp. 1-3
Author(s):  
Carlos E. Duran ◽  
Mayra Estacio ◽  
Fredy Lozano ◽  
Esteban Echeverri ◽  
Maria Juliana Riascos ◽  
...  

Case Presentation. Distal renal tubular acidosis (dRTA) is characterized by impaired hydrogen ion secretion in the distal nephron resulting either from decreased net activity of the proton pump or from increased luminal membrane hydrogen ion permeability. Typical complications of dRTA include severe hypokalemia, normal anion gap metabolic acidosis, nephrolithiasis, and nephrocalcinosis. The patient is a 25-year-old woman in immediate puerperium with hypokalemia leading to paralysis, and the laboratory findings in this patients were concerning for dRTA. It is rare to encounter this entity during pregnancy, and the impact of this pathology is unknown.


2021 ◽  
Vol 22 (10) ◽  
pp. 5133
Author(s):  
Raquel Centeio ◽  
Jiraporn Ousingsawat ◽  
Rainer Schreiber ◽  
Karl Kunzelmann

TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1629 ◽  
Author(s):  
Mari Iwasaki ◽  
Yasutada Akiba ◽  
Jonathan D Kaunitz

Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.


2019 ◽  
Vol 100 (1) ◽  
pp. 84-97 ◽  
Author(s):  
Réka Molnár ◽  
Tamara Madácsy ◽  
Árpád Varga ◽  
Margit Németh ◽  
Xénia Katona ◽  
...  

Pancreatology ◽  
2019 ◽  
Vol 19 ◽  
pp. S18
Author(s):  
Réka Molnár ◽  
Marietta Görög ◽  
Julia Fanczal ◽  
Tamara Madácsy ◽  
Margit Németh ◽  
...  

2019 ◽  
Vol 85 (7) ◽  
pp. 1048-1054
Author(s):  
Vittoria Buccigrossi ◽  
Andrea Lo Vecchio ◽  
Antonella Marano ◽  
Alfredo Guarino

Sign in / Sign up

Export Citation Format

Share Document