Pattern of sperm storage and migration in the reproductive tract of the swallowtail butterfly Papilio xuthus: cryptic female choice after second mating

2010 ◽  
Vol 35 (4) ◽  
pp. 328-333 ◽  
Author(s):  
MAMORU WATANABE ◽  
NAYUTA SASAKI
2017 ◽  
Vol 284 (1860) ◽  
pp. 20171032 ◽  
Author(s):  
Nicola Hemmings ◽  
Tim Birkhead

When females mate promiscuously, female sperm storage provides scope to bias the fertilization success towards particular males via the non-random acceptance and utilization of sperm. The difficulties observing post-copulatory processes within the female reproductive tract mean that the mechanisms underlying cryptic female choice remain poorly understood. Here, we use zebra finches Taeniopygia guttata , selected for divergent sperm lengths, combined with a novel technique for isolating and extracting sperm from avian sperm storage tubules (SSTs), to test the hypothesis that sperm from separate ejaculates are stored differentially by female birds. We show that sperm from different inseminations enter different SSTs in the female reproductive tract, resulting in almost complete segregation of the sperm of competing males. We propose that non-random acceptance of sperm into SSTs, reflected in this case by sperm phenotype, provides a mechanism by which long sperm enjoy enhanced fertilization success in zebra finches.


Author(s):  
Patricia L.R. Brennan ◽  
Dara N. Orbach

The field of post-copulatory sexual selection investigates how female and male adaptations have evolved to influence the fertilization of eggs while optimizing fitness during and after copulation, when females mate with multiple males. When females are polyandrous (one female mates with multiple males), they may optimize their mating rate and control the outcome of mating interactions to acquire direct and indirect benefits. Polyandry may also favor the evolution of male traits that offer an advantage in post-copulatory male-male sperm competition. Sperm competition occurs when the sperm, seminal fluid, and/or genitalia of one male directly impacts the outcome of fertilization success of a rival male. When a female mates with multiple males, she may use information from a number of traits to choose who will sire her offspring. This cryptic female choice (CFC) to bias paternity can be based on behavioral, physiological, and morphological criteria (e.g., copulatory courtship, volume and/or composition of seminal fluid, shape of grasping appendages). Because male fitness interests are rarely perfectly aligned with female fitness interests, sexual conflict over mating and fertilization commonly occur during copulatory and post-copulatory interactions. Post-copulatory interactions inherently involve close associations between female and male reproductive characteristics, which in many species potentially include sperm storage and sperm movement inside the female reproductive tract, and highlight the intricate coevolution between the sexes. This coevolution is also common in genital morphology. The great diversity of genitalia among species is attributed to sexual selection. The evolution of genital attributes that allow females to maintain reproductive autonomy over paternity via cryptic female choice or that prevent male manipulation and sexual control via sexually antagonistic coevolution have been well documented. Additionally, cases where genitalia evolve through intrasexual competition are well known. Another important area of study in post-copulatory sexual selection is the examination of trade-offs between investments in pre-copulatory and post-copulatory traits, since organisms have limited energetic resources to allocate to reproduction, and securing both mating and fertilization is essential for reproductive success.


Author(s):  
Leigh W. Simmons

Darwin viewed sexual selection as a process that ended with mate acquisition, assuming that females are fundamentally monogamous, mating with just one male. ‘Sexual selection after mating’, however, shows this assumption to be false. Sexual selection continues long after the physical act of mating is over, as sperm compete inside a female’s reproductive tract and females bias the paternity of their young by selectively using sperm from particular males. Multiple mating by females has turned out to be ubiquitous across animal taxa. The far-reaching evolutionary consequences of sperm competition and cryptic female choice for the evolution of reproductive traits are examined, from the gametes themselves to the adult organisms producing them.


2013 ◽  
Vol 280 (1769) ◽  
pp. 20131296 ◽  
Author(s):  
Hanne Løvlie ◽  
Mark A. F. Gillingham ◽  
Kirsty Worley ◽  
Tommaso Pizzari ◽  
David S. Richardson

Cryptic female choice may enable polyandrous females to avoid inbreeding or bias offspring variability at key loci after mating. However, the role of these genetic benefits in cryptic female choice remains poorly understood. Female red junglefowl, Gallus gallus , bias sperm use in favour of unrelated males. Here, we experimentally investigate whether this bias is driven by relatedness per se , or by similarity at the major histocompatibility complex (MHC), genes central to vertebrate acquired immunity, where polymorphism is critical to an individual's ability to combat pathogens. Through experimentally controlled natural matings, we confirm that selection against related males' sperm occurs within the female reproductive tract but demonstrate that this is more accurately predicted by MHC similarity: controlling for relatedness per se , more sperm reached the eggs when partners were MHC-dissimilar. Importantly, this effect appeared largely owing to similarity at a single MHC locus (class I minor). Further, the effect of MHC similarity was lost following artificial insemination, suggesting that male phenotypic cues might be required for females to select sperm differentially. These results indicate that postmating mechanisms that reduce inbreeding may do so as a consequence of more specific strategies of cryptic female choice promoting MHC diversity in offspring.


2019 ◽  
Author(s):  
Stefan Lüpold ◽  
Jonathan Bradley Reil ◽  
Mollie K. Manier ◽  
Valérian Zeender ◽  
John M. Belote ◽  
...  

AbstractHow males and females contribute to joint reproductive success has been a long-standing question in sexual selection. Under postcopulatory sexual selection (PSS), paternity success is predicted to derive from complex interactions among females engaging in cryptic female choice and males engaging in sperm competition. Such interactions have been identified as potential sources of genetic variation in sexually selected traits but are also expected to inhibit trait diversification. To date, studies of interactions between females and competing males have focused almost exclusively on genotypes and not phenotypic variation in sexually selected traits. Here, we characterize within- and between-sex interactions inDrosophila melanogasterusing isogenic lines with heritable variation in both male and female traits known to influence competitive fertilization. We found surprisingly few genotypic interaction effects on various stages of PSS such as female remating interval, copulation duration, sperm transfer, or sperm storage. Only the timing of female sperm ejection depended on female × male genotypic interactions. By contrast, several reproductive events, including sperm transfer, female sperm ejection and sperm storage, were explained by two- and three-way interactions among sex-specific phenotypes. We also documented complex interactions between the lengths of competing males’ sperm and the female seminal receptacle, which are known to have experienced rapid female-male co-diversification. Our results highlight the non-independence of sperm competition and cryptic female choice and demonstrate that complex interactions between the sexes do not limit the ability of multivariate systems to respond to directional sexual selection.Significance statementFor species with internal fertilization and female promiscuity, postcopulatory sexual selection (PSS) is believed to depend, in part, on complex interactions between rival males and between the sexes. Although little investigated, clarifying such interactions is critical as they may limit the efficacy of PSS in the diversification of reproductive traits (e.g., ejaculate biochemistry and sperm, genitalia and female reproductive tract morphology). Here, we resolve how sex-specific traits and their interactions contribute to key reproductive events and outcomes related to competitive fertilization success, including traits known to have experienced rapid diversification. Our results provide novel insights into the operation and complexity of PSS and demonstrate that the processes of sperm competition and cryptic female choice are not independent selective forces.


Sign in / Sign up

Export Citation Format

Share Document