Stomatal response to vapour pressure deficit and the effect of plant water stress

1983 ◽  
Vol 6 (6) ◽  
pp. 451-456
Author(s):  
JON D. JOHNSON ◽  
WILLIAM K. FERRELL
2014 ◽  
Vol 41 (5) ◽  
pp. 535 ◽  
Author(s):  
Warren C. Conaty ◽  
James R. Mahan ◽  
James E. Neilsen ◽  
Greg A. Constable

Crop canopy temperature (Tc) is coupled with transpiration, which is a function of soil and atmospheric conditions and plant water status. Thus, Tc has been identified as a real-time, plant-based tool for crop water stress detection. Such plant-based methods theoretically integrate the water status of both the plant and its environment. However, previous studies have highlighted the limitations and difficulty of interpreting the Tc response to plant and soil water stress. This study investigates the links between cotton Tc, established measures of plant water relations and atmospheric vapour pressure deficit (VPDa). Concurrent measures of carbon assimilation (A), stomatal conductance (gs), leaf water potential (Ψl), soil water (fraction of transpirable soil water (FTSW)) and Tc were conducted in surface drip irrigated cotton over two growing seasons. Associations between A, gs, Ψl, FTSW and Tc are presented, which are significantly improved with the inclusion of VPDa. It was concluded that utilising the strong associations between Ψl, VPDa and Tc, an adjustment of 1.8°C for each unit of VPDa should be made to the critical Tc for irrigation. This will improve the precision of irrigation in Tc based irrigation scheduling protocols. Improved accuracy in water stress detection with Tc, and an understanding of the interaction the environment plays in this response, can potentially improve the efficiency of irrigation.


2017 ◽  
Vol 4 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Valeria Palazzari ◽  
Paolo Mezzanotte ◽  
Federico Alimenti ◽  
Francesco Fratini ◽  
Giulia Orecchini ◽  
...  

This paper describes the design, realization, and application of a custom temperature sensor devoted to the monitoring of the temperature differential between the leaf and the air. This difference is strictly related to the plant water stress and can be used as an input information for an intelligent and flexible irrigation system. A wireless temperature sensor network can be thought as a decision support system used to start irrigation when effectively needed by the cultivation, thus saving water, pump fuel oil, and preventing plant illness caused by over-watering.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2006 ◽  
Vol 234 ◽  
pp. S27 ◽  
Author(s):  
Gavriil Xanthopoulos ◽  
Georgios Maheras ◽  
Vassiliki Gouma ◽  
Markos Gouvas

Sign in / Sign up

Export Citation Format

Share Document