scholarly journals Reducing the Excessive Evaporative Demand Improved the Water-use Efficiency of Greenhouse Cucumber by Regulating the Trade-off between Irrigation Demand and Plant Productivity

HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.

2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

2016 ◽  
Author(s):  
Margriet Groenendijk ◽  
Peter M. Cox ◽  
Ben B. B. Booth ◽  
Stefan C. Dekker ◽  
Chris Huntingford

Abstract. Plant Water Use Efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand – which can arise from increases in near-surface temperature or decreases in relative humidity. We have used Δ13C measurements from tree-rings, along with eddy-covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 and atmospheric humidity deficit. This enables us to reconstruct fractional changes in WUE, based on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to 2010 by 48 ± 22 %, which is more than double that simulated by the latest Earth System Models. This long-term trend is largely driven by increases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relative humidity. There are several highly populated regions, such as Western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last two decades.


1993 ◽  
Vol 41 (3) ◽  
pp. 293 ◽  
Author(s):  
T Brodribb ◽  
RS Hill

Leaves and phyllodes of A. melanoxylon were compared in several aspects of their physiology. Changes in gas exchange and water use efficiency (WUE) under controlled conditions of vapour pressure deficit (vpd) and foliar water potential were examined. Water use efficiency in phyllodes remained constant under a wide range of evaporative demand due to high stomatal sensitivity to vpd. Leaf stomata were less sensitive to changes in vpd causing decreased WUE with increased vpd. Under water stress phyllodes survived longer and produced higher WUE than leaves. Maximum photosynthetic rates per unit foliar area were higher in phyllodes than leaves. Thus, phyllodes have a number of advantages over leaves under conditions of long and short term water stress and high irradiance. Leaves had a higher photosynthetic rate per unit of photosynthetic investment than phyllodes, suggesting that their function is to maximise growth during the seedling phase.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


2021 ◽  
Author(s):  
Pablo Affortit ◽  
Branly Effa Effa ◽  
Mame Sokhatil Ndoye ◽  
Daniel Moukouanga ◽  
Nathalie Luchaire ◽  
...  

Because water availability is the most important environmental factor limiting crop production, improving water use efficiency, the amount of carbon fixed per water used, is a major target for crop improvement. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand, remain unknown. These traits were measured in a panel of 147 African rice Oryza glaberrima genotypes, known as potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly differentiated genotypes confirmed these associations and suggested that the root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency and its residuals, that links to genes involved in water transport and cell wall patterning. Our data suggest that root shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.


Sign in / Sign up

Export Citation Format

Share Document