Pyroclastic density currents from Teide-Pico Viejo (Tenerife, Canary Islands): implications for hazard assessment

Terra Nova ◽  
2011 ◽  
Vol 23 (3) ◽  
pp. 220-224 ◽  
Author(s):  
Olaya García ◽  
Joan Martí ◽  
Gerardo Aguirre ◽  
Adelina Geyer ◽  
Ilazkiñe Iribarren
2014 ◽  
Vol 14 (7) ◽  
pp. 1853-1870 ◽  
Author(s):  
L. Becerril ◽  
S. Bartolini ◽  
R. Sobradelo ◽  
J. Martí ◽  
J. M. Morales ◽  
...  

Abstract. Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.


2014 ◽  
Vol 2 (2) ◽  
pp. 1799-1835 ◽  
Author(s):  
L. Becerril ◽  
S. Bartolini ◽  
R. Sobradelo ◽  
J. Martí ◽  
J. M. Morales ◽  
...  

Abstract. Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted in the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyze the past eruptive activity (how), the spatial probability (where) and the temporal probability (when) of an eruption on the island. By studying the past eruptive behavior of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result is the first total qualitative volcanic hazard map of the island.


Sign in / Sign up

Export Citation Format

Share Document