scholarly journals Are there interactive effects of mate availability and predation risk on life history and defence in a simultaneous hermaphrodite?

2008 ◽  
Vol 21 (5) ◽  
pp. 1371-1378 ◽  
Author(s):  
J. R. AULD ◽  
R. A. RELYEA
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel E Winkler ◽  
Michelle Yu-Chan Lin ◽  
José Delgadillo ◽  
Kenneth J Chapin ◽  
Travis E Huxman

We studied how a rare, endemic alpine cushion plant responds to the interactive effects of warming and drought. Overall, we found that both drought and warming negatively influenced the species growth but that existing levels of phenotypic variation may be enough to at least temporarily buffer populations.


Oikos ◽  
2016 ◽  
Vol 126 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Chiara Morosinotto ◽  
Alexandre Villers ◽  
Rauno Varjonen ◽  
Erkki Korpimäki

2019 ◽  
Vol 97 (1) ◽  
pp. 1-12 ◽  
Author(s):  
L. Merrill ◽  
S.J. Chiavacci ◽  
R.T. Paitz ◽  
T.J. Benson

Steroid hormones play critical organizational and activational roles during vertebrate development, impacting everything from sexual differentiation to metabolic activity. For oviparous species such as birds, these hormones are transferred from female to egg during follicle maturation, and differences in relative and absolute concentrations of the steroid hormones may reflect differences in life history, developmental, and ecological conditions. Prior work on yolk steroid hormones has focused on a handful of candidate hormones (e.g., testosterone, androstenedione, and corticosterone), but we used high-performance liquid chromatography with tandem mass spectroscopy (LC–MS–MS) to quantify 27 yolk steroids from the eggs of seven shrubland bird species (American Robin, Turdus migratorius Linnaeus, 1766; Brown-headed Cowbird, Molothrus ater (Boddaert, 1783); Brown Thrasher, Toxostoma rufum (Linnaeus, 1758); Eastern Towhee, Pipilo erythrophthalmus (Linnaeus, 1758); Field Sparrow, Spizella pusilla (A. Wilson, 1810); Gray Catbird, Dumetella carolinensis (Linnaeus, 1766); Northern Cardinal, Cardinalis cardinalis (Linnaeus, 1758)). In addition to comparing steroid profiles across species, we conducted exploratory analyses to determine how the hormones clustered using a principal component (PC) approach and if PCs were correlated with aspects of egg resources (relative egg size, proportion yolk), life-history traits (embryonic and nestling development speed), and nest-predation risk (daily survival rate (DSR)). We documented substantial interspecific variation in both absolute and proportional endocrine profiles. PCAs indicated that glucocorticoids generally clustered together (PC1), but other classes of steroids did not. PC2 and PC3 strongly covaried with egg resources, DSR, and development speed, suggesting that they reflect adaptive patterns of maternal hormone deposition.


2011 ◽  
Vol 8 (3) ◽  
pp. 465-468 ◽  
Author(s):  
Krijn P. Paaijmans ◽  
Simon Blanford ◽  
Brian H. K. Chan ◽  
Matthew B. Thomas

The development rate of parasites and pathogens within vectors typically increases with temperature. Accordingly, transmission intensity is generally assumed to be higher under warmer conditions. However, development is only one component of parasite/pathogen life history and there has been little research exploring the temperature sensitivity of other traits that contribute to transmission intensity. Here, using a rodent malaria, we show that vector competence (the maximum proportion of infectious mosquitoes, which implicitly includes parasite survival across the incubation period) tails off at higher temperatures, even though parasite development rate increases. We also show that the standard measure of the parasite incubation period (i.e. time until the first mosquitoes within a cohort become infectious following an infected blood-meal) is incomplete because parasite development follows a cumulative distribution, which itself varies with temperature. Including these effects in a simple model dramatically alters estimates of transmission intensity and reduces the optimum temperature for transmission. These results highlight the need to understand the interactive effects of environmental temperature on multiple host-disease life-history traits and challenge the assumptions of many current disease models that ignore this complexity.


2016 ◽  
Vol 62 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Jemma Katwaroo-Andersen ◽  
Chris K. Elvidge ◽  
Indar Ramnarine ◽  
Grant E. Brown

Sign in / Sign up

Export Citation Format

Share Document