POSTGENITAL FUSION IN THE GYNOECIUM OF THE PERICLINAL CHIMERA LABURNOCYTISUS ADAMII (POIT.) SCHNEID. (PAPILIONACEAE)

1979 ◽  
Vol 28 (2-3) ◽  
pp. 159-167 ◽  
Author(s):  
J. H. Boeke ◽  
G. J. C. M. Van Vliet
1993 ◽  
Vol 71 (1) ◽  
pp. 74-86 ◽  
Author(s):  
James R. Kemp ◽  
Usher Posluszny ◽  
Jean M. Gerrath ◽  
Peter G. Kevan

The development of the flower of Rosa setigera from initiation to the onset of anthesis is described. Rosa setigera is the only known member of the genus Rosa to exhibit dioecy. Flowers of functionally staminate (male) and functionally carpellate (female) plants appear identical, a condition referred to as cryptic dioecy. Discrete sepals and petals are formed on the floral meristem. As the hypanthium forms, stamens are initiated in alternating whorls on the wall of the hypanthium and continue to develop as the hypanthium extends. Carpel primordia arise individually on the remainder of the floral meristem and show neither adnation to the hypanthial wall nor coalescence to one another as they give rise to the styles and stigmas that are exserted above the hypanthium lip. The only observable fusion in this species appears to be the postgenital fusion of the margins of the carpel primordia to form the enclosed locule. Although historically the hypanthium has been variously interpreted as either axial and (or) appendicular in nature, resulting from congenital fusion of sepals, petals, and stamens, this paper uses a more realistic, testable and functional approach to the development of the hypanthium that is in keeping with current concepts such as process morphology. Key words: Rosa setigera, dioecy, floral development, fusion, hypanthium.


2007 ◽  
Vol 55 (1) ◽  
pp. 30 ◽  
Author(s):  
Sandra Luz Gómez-Acevedo ◽  
Susana Magallón ◽  
Lourdes Rico-Arce

The complete sequence of floral development in three species of Acacia was analysed. These species were sampled from each of the three Acacia subgenera. The species were Acacia berlandieri Benth. (subg. Aculeiferum), A. pennatula (Schltdl. & Cham.) Benth. (subg. Acacia) and A. saligna (Labill.) H.L.Wendl. (subg. Phyllodineae). The aim of the study was to determine whether the different subgenera share developmental pathways during flower formation. This study showed that development in the genus Acacia is heterogeneous. Each species studied showed different inception patterns of the calyx and androecium, whereas the inception patterns of the corolla and gynoecium were similar. These differences of inception in the calyx are not necessarily constant within each subgenus. Nevertheless, each subgenus was differentiated on the basis of inception patterns of the androecium, and other features such as the presence or absence of congenital or postgenital fusion in the calyx and corolla, and the time of differentiation of calyx and corolla tubes and the style.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 560c-560
Author(s):  
Yong Cheong Koh ◽  
Fred T. Davies

The leaves of vegetative stolons of greenhouse grown Cryptanthus `Marian Oppenheimer' (wide leaf clone) were cultured in modified MS media to induce adventitious shoot formation via callus formation. The best callus induction medium was basal MS medium with 10 μM NAA, IBA and BA. Pure green (843), maroon (3), striped (2) and albino plantlets were obtained. Most of the albino plantlets were stunted, tightly clumped together and impossible to score. The medium which produced the highest average number of non-albino plantlets was basal MS medium with 0.3 μM NAA, IBA and BA All non-albino plantlets were rooted in MS medium with 5.4 μM NAA and transplanted ex vitro with a survival rate of 96.7%. The maroon plantlets became green two weeks after transplanting. Histological studies revealed that C. `Marian Oppenheimer' (wide leaf clone) has two tunicas (L1 and L2) and a corpus (L3). Callus on the leaf explant arose mainly from the L2 and L3. Apparently C. `Marian Oppenheimer' (wide leaf clone) is a GWG periclinal chimera.


2013 ◽  
Vol 12 (1) ◽  
pp. 610-617 ◽  
Author(s):  
N.M.A. Nassar ◽  
N. Bomfim
Keyword(s):  

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 562 ◽  
Author(s):  
Tsunaki Nukaya ◽  
Miki Sudo ◽  
Masaki Yahata ◽  
Tomohiro Ohta ◽  
Akiyoshi Tominaga ◽  
...  

A ploidy chimera of the Meiwa kumquat (Fortunella crassifolia Swingle), which had been induced by treating the nucellar embryos with colchicine, and had diploid (2n = 2x = 18) and tetraploid (2n = 4x = 36) cells, was examined for its ploidy level, morphological characteristics, and sizes of its cells in its leaves, flowers, and fruits to reveal the ploidy level of each histogenic layer. Furthermore, the chimera was crossed with the diploid kumquat to evaluate the ploidy level of its reproductive organs. The morphological characteristics and the sizes of the cells in the leaves, flowers, and fruits of the chimera were similar to those of the tetraploid Meiwa kumquat and the ploidy periclinal chimera known as “Yubeni,” with diploids in the histogenic layer I (L1) and tetraploids in the histogenic layer II (L2) and III (L3). However, the epidermis derived from the L1 of the chimera showed the same result as the diploid Meiwa kumquat in all organs and cells. The sexual organs derived from the L2 of the chimera were significantly larger than those of the diploid. Moreover, the ploidy level of the seedlings obtained from the chimera was mostly tetraploid. In the midrib derived from the L3, the chimera displayed the fluorescence intensity of a tetraploid by flow cytometric analysis and had the same size of the cells as the tetraploid and the Yubeni. According to these results, the chimera is thought to be a ploidy periclinal chimera with diploid cells in the outermost layer (L1) and tetraploid cells in the inner layers (L2 and L3) of the shoot apical meristem. The chimera had desirable fruit traits for a kumquat such as a thick pericarp, a high sugar content, and a small number of developed seeds. Furthermore, triploid progenies were obtained from reciprocal crosses between the chimera and diploid kumquat.


2017 ◽  
Vol 16 (3) ◽  
Author(s):  
P M Gakpetor ◽  
H Mohammed ◽  
D Moreti ◽  
N M A Nassar

Sign in / Sign up

Export Citation Format

Share Document