Parity and disparity between two Chama oysters: the reproductive biology of the Indo-Pacific C. pacifica Broderip, invasive to the Mediterranean Sea; and C. savignyi Lamy, indigenous to the Red Sea

2011 ◽  
Vol 33 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Dror Zurel ◽  
Uri Gophna ◽  
Yehuda Benayahu
2020 ◽  
Vol 24 (6) ◽  
pp. 117-134
Author(s):  
Elham M. Abdelhak ◽  
Fedekar F. Madkour ◽  
Azza A. El Ganainy ◽  
Mohamed A. Abu El-Regal ◽  
Mohamed I. Ahmed

2021 ◽  
Author(s):  
Paolo G. Albano ◽  
Anna Sabbatini ◽  
Jonathan Lattanzio ◽  
Jan Steger ◽  
Sönke Szidat ◽  
...  

<p>The Lessepsian invasion – the largest marine biological invasion – followed the opening of the Suez Canal in 1869 (81 years BP). Shortly afterwards, tropical species also distributed in the Red Sea appeared on Mediterranean shores: it was the dawn of what would become the invasion of several hundred tropical species. The time of the Suez Canal opening coincided with an acceleration in natural history exploration and description, but the eastern sectors of the Mediterranean Sea lagged behind and were thoroughly explored only in the second half of the 20<sup>th</sup> century. Many parts are still insufficiently studied today. Baseline information on pre-Lessepsian ecosystem states is thus scarce. This knowledge gap has rarely been considered by invasion scientists: every new finding of species belonging to tropical clades has been assumed to be a Lessepsian invader.</p><p>We here question this assumption by radiocarbon dating seven individual tests of miliolids – imperforated calcareous foraminifera – belonging to five alleged non-indigenous species. Tests were found in two sediment cores collected at 30 and 40 m depth off Ashqelon, on the Mediterranean Israeli shelf. We dated one <em>Cribromiliolinella milletti </em>(core at 40 m, 20 cm sediment depth), three <em>Nodophthalmidium antillarum </em>(core at 40 m, 35 cm sediment depth), one <em>Miliolinella </em>cf. <em>fichteliana </em>(core at 30 m, 110 cm sediment depth), one <em>Articulina alticostata </em>(core at 40 m, 35 cm sediment depth) and one <em>Spiroloculina antillarum </em>(core at 30 m, 110 cm sediment depth). All foraminiferal tests proved to be of Holocene age, with a median calibrated age spanning between 749 and 8285 years BP. Only one test of <em>N. antillarum</em> showed a 2-sigma error overlapping the time of the opening of the Suez Canal, but with a median age of 1123 years BP. Additionally, a thorough literature search resulted in a further record of <em>S. antillarum</em> in a core interval dated 1820–2064 years BP in Turkey.</p><p>Therefore, these foraminiferal species are not introduced, but native species. They are all circumtropical or Indo-Pacific and in the Mediterranean distributed mostly in the eastern sectors (only <em>S. antillarum</em> occurs also in the Adriatic Sea). Two hypotheses can explain our results: these species are Tethyan relicts that survived the Messinian salinity crisis (5.97–5.33 Ma) and the glacial periods of the Pleistocene in the Eastern Mediterranean, which may have never desiccated completely during the Messinian crisis and which may have worked as a warm-water refugium in the Pleistocene; or they entered the Mediterranean Sea from the Red Sea more recently but before the opening of the Suez Canal, for example during the Last Interglacial (MIS5e) high-stand (125,000 years BP) when the flooded Isthmus of Suez enabled exchanges between the Mediterranean and the Indo-Pacific fauna. The recognition that some alleged Lessepsian invaders are in fact native species influences our understanding of the invasion process, its rates and environmental correlates.</p>


2014 ◽  
Vol 17 (4) ◽  
pp. 454-462
Author(s):  
Hamed A. El-Serehy ◽  
Fahad A. Al-Misned ◽  
Nasser S. Abdel-Rahman ◽  
Khaled A. Al-Rasheid

2021 ◽  
Author(s):  
Débora Silva Raposo ◽  
Raphaël Morard ◽  
Christiane Schmidt ◽  
Michal Kucera

<p>In recent decades the “Lessepsian” migration caused a rapid change in the marine community composition due to the invasion of alien species from the Red Sea into the Mediterranean Sea. Among these invaders is the large benthic foraminifera <em>Amphistegina lobifera</em>, a diatom-bearing species that recently reached the invasion front in Sicily. There it copes with colder winters and broader temperature than in its original source, the Red Sea. It is not yet known how (or if) the population from the invasion front has developed adaptation to this new thermal regime. Understanding the modern marine invasive patterns is a crucial tool to predict future invasive successes in marine environments. Therefore, in this study we aim to evaluate the physiological responses to cold temperatures of <em>A. lobifera</em> populations at three different invasive stages: source (Red Sea), early invader (Eastern Mediterranean) and invasion front (Sicily). For this, we conducted a culturing experiment in which we monitored the responses of the foraminifera (growth, motility) to temperatures of 10, 13, 16, 19°C + control (25°C) over four weeks. To address what is the role of their endosymbionts in the adaptation process, we also monitored their photosynthetic activity (Pulse Amplitude Modulation - PAM fluorometer) during the experiment. The growth rate of the foraminifera was reduced for all populations below 19°C as well as the motility, reduced until 16°C and dropping to zero below 13°C. The response of the endosymbionts was however different. There was a reduced photosynthetic activity of the Red Sea and Eastern Mediterranean populations at colder temperatures observed by the lower maximum quantum yield (Fv:Fm) and effective quantum yield (Y(II)), when compared to their initial levels and to the other treatments. In the meantime, the endosymbionts of the Sicily population stood out with the highest photosynthetic activity (Fv:Fm and Y(II)) in the treatments bellow 13 °C (P < 0.05). In conclusion, we observed that while the host responses were similar between the three populations, the endosymbionts from the invasion front population shows the best performance at colder temperatures. This suggests that the photo-symbiosis has an important role in adaptation, most likely being a key factor to the success of past and future migrations.</p>


1982 ◽  
Vol 35 (3) ◽  
pp. 460-465
Author(s):  
Nabil Hilaly

It is recorded that Egypt was the first country to dig a canal to promote world trade; the first canal was dug in the reign of Pharaoh Senusret III (1887–1849 B.C.), to link the Mediterranean Sea with the Red Sea through the Nile delta. This canal, often abandoned due to silting, was reopened for navigation by later Pharaohs and finally by Amro Ibn El Ass in A.D. 640 after which it remained open for 150 years.


2015 ◽  
Vol 42 (12) ◽  
pp. 2363-2373 ◽  
Author(s):  
Michel Bariche ◽  
Martha Torres ◽  
Colin Smith ◽  
Nancy Sayar ◽  
Ernesto Azzurro ◽  
...  

2010 ◽  
Vol 11 (2) ◽  
pp. 331 ◽  
Author(s):  
M. CORSINI-FOKA ◽  
M.A. PANCUCCI-PAPADOPOULOU ◽  
G. KONDILATOS ◽  
S. KALOGIROU

The first record for the Mediterranean Sea of the Red Sea/Indo-Pacific portunid Gonioinfradens paucidentatus (red swimming crab) is documented. A detailed description of the specimens collected at Rodos Island (southeastern Aegean Sea) is given, while possible introduction vectors of the species in the area are discussed.


2014 ◽  
Vol 16 (1) ◽  
pp. 201 ◽  
Author(s):  
M. CORSINI-FOKA ◽  
G. KONDYLATOS

The presence of the crab Actaeodes tomentosus, native to the Indo-Pacific Ocean and the Red Sea, is documented for the first time in the Mediterranean Sea, on the basis of two specimens collected from Rhodes Island (Aegean Sea), a marine area particularly vulnerable to warm-water alien invasions. Along with the recent report of Xanthias lamarckii in similar conditions and region, the finding of another non-indigenous xanthid opens many questions regarding their occurrence in the area. Apart from the Lessepsian migration, other possible vectors of introduction are therefore examined.


Sign in / Sign up

Export Citation Format

Share Document