CONTROL OF MUSCLE RYANODINE RECEPTOR CALCIUM RELEASE CHANNELS BY PROTEINS IN THE SARCOPLASMIC RETICULUM LUMEN

2009 ◽  
Vol 36 (3) ◽  
pp. 340-345 ◽  
Author(s):  
Nicole A Beard ◽  
Lan Wei ◽  
Angela F Dulhunty
2000 ◽  
Vol 28 (1) ◽  
pp. A18-A18
Author(s):  
C. O'Neill ◽  
J. Fastbom ◽  
R. Cowburn ◽  
M. Carmody ◽  
T.G. Ohm ◽  
...  

1997 ◽  
Vol 273 (3) ◽  
pp. H1082-H1089 ◽  
Author(s):  
P. Lahouratate ◽  
J. Guibert ◽  
J. F. Faivre

Cyclic ADP-ribose (cADPR), an endogenous metabolite of beta-NAD+, activates Ca2+ release from endoplasmic reticulum in sea urchin eggs via the ryanodine receptor (RyR) pathway. A similar role has been proposed in cardiac sarcoplasmic reticulum (SR), although this remains controversial. We therefore investigated the ability of cADPR to induce Ca2+ release from canine cardiac SR microsomes using fluo 3 to monitor extravesicular Ca2+ concentration. We found that cADPR induced Ca2+ release in a concentration-dependent manner, whereas neither its precursor, NAD+, nor its metabolite, ADP-ribose, elicited a consistent effect. In addition, an additive effect on calcium release between cADPR and 9-Me-7-Br-eudistomin-D (MBED), an activator of RyR, was found as well as no cross-desensitization between cADPR and MBED. Specific blockers of the RyR did not abolish the cADPR-induced Ca2+ release. These results provide evidence for cADPR-induced Ca2+ release from dog cardiac SR via a novel mechanism which is independent of RyR activation.


2016 ◽  
Vol 173 (15) ◽  
pp. 2446-2459 ◽  
Author(s):  
Mark L Bannister ◽  
Anita Alvarez‐Laviada ◽  
N Lowri Thomas ◽  
Sammy A Mason ◽  
Sharon Coleman ◽  
...  

1995 ◽  
Vol 15 (5) ◽  
pp. 387-397 ◽  
Author(s):  
Cecilia Hidalgo ◽  
Paulina Donoso

This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well.


2006 ◽  
Vol 25 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Peter A. Nicholl ◽  
Susan E. Howlett

ABSTRACTWhether the density of sarcoplasmic reticulum (SR) calcium release channels / ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of «3H»-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes. Experiments utilized young (120 days) and older adult (300 days) hamsters. «3H»-ryanodine binding site density did not change with age in crude homogenate preparations, although total heart protein concentration increased significantly with age. In contrast, the density of «3H»-ryanodine binding sites decreased markedly in heavy SR membranes purified from older hearts. These results show that demonstration of age-related changes in cardiac ryanodine receptor density depends upon the preparation used. Furthermore, the increase in total ventricular protein with age suggests that normalization of data by membrane protein should be used with caution in studies of aging heart.


2014 ◽  
Vol 114 (7) ◽  
pp. 1114-1124 ◽  
Author(s):  
Hyun Seok Hwang ◽  
Florentin R. Nitu ◽  
Yi Yang ◽  
Kafa Walweel ◽  
Laetitia Pereira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document