Phylogenetic study of the Nemaliales (Rhodophyta) based on large-subunit ribosomal DNA sequences supports segregation of the Scinaiaceae fam. nov. and resurrection of Dichotomaria Lamarck

2004 ◽  
Vol 52 (3) ◽  
pp. 224-234 ◽  
Author(s):  
John M. Huisman ◽  
James T. Harper ◽  
Gary W. Saunders
1993 ◽  
Vol 71 (1) ◽  
pp. 52-63 ◽  
Author(s):  
G. Hausner ◽  
J. Reid ◽  
G. R. Klassen

Analyses of partial rDNA sequences from both the small and large subunit genes of species of Ceratocystis s.l. support the contention that species that lack Chalara anamorphs, are resistant to cycloheximide, and have rhamnose in their cell walls should be assigned to Ophiostoma, whereas only species with Chalara anamorphs should be accommodated in Ceratocystis s.s. The data also show that Ceratocystiopsis is polyphyletic, and Sphaeronaemella fimicola appears to have little relation to either Ceratocystis or Ophiostoma. Key words: Ceratocystis, Ophiostoma, phylogeny, partial rDNA sequences.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yi-Fan Cao ◽  
Hui-Xia Chen ◽  
Yang Li ◽  
Dang-Wei Zhou ◽  
Shi-Long Chen ◽  
...  

Abstract Background The Tibetan antelope Pantholops hodgsonii (Abel) (Artiodactyla: Bovidae) is an endangered species of mammal endemic to the Qinghai-Tibetan Plateau. Parasites and parasitic diseases are considered to be important threats in the conservation of the Tibetan antelope. However, our present knowledge of the composition of the parasites of the Tibetan antelope remains limited. Methods Large numbers of nematode parasites were collected from a dead Tibetan antelope. The morphology of these nematode specimens was observed using light and scanning electron microscopy. The nuclear and mitochondrial DNA sequences, i.e. small subunit ribosomal DNA (18S), large subunit ribosomal DNA (28S), internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (cox1), were amplified and sequenced for molecular identification. Moreover, phylogenetic analyses were performed using maximum likelihood (ML) inference based on 28S and 18S + 28S + cox1 sequence data, respectively, in order to clarify the systematic status of these nematodes. Results Integrated morphological and genetic evidence reveals these nematode specimens to be a new species of pinworm Skrjabinema longicaudatum (Oxyurida: Oxyuridae). There was no intraspecific nucleotide variation between different individuals of S. longicaudatum n. sp. in the partial 18S, 28S, ITS and cox1 sequences. However, a high level of nucleotide divergence was revealed between the new species and its congeners in 28S (8.36%) and ITS (20.3–23.7%) regions, respectively. Molecular phylogenetic results suggest that the genus Skrjabinema should belong to the subfamily Oxyurinae (Oxyuroidea: Oxyuridae), instead of the subfamily Syphaciidae or Skrjabinemiinae in the traditional classification, as it formed a sister relationship to the genus Oxyuris. Conclusions A new species of pinworm Skrjabinema longicaudatum n. sp. (Oxyurida: Oxyuridae) is described. Skrjabinema longicaudatum n. sp. represents the first species of Oxyurida (pinworm) and the fourth nematode species reported from the Tibetan antelope. Our results contribute to the knowledge of the species diversity of parasites from the Tibetan antelope, and clarify the systematic position of the genus Skrjabinema.


2000 ◽  
Vol 49 (2) ◽  
pp. 278-305 ◽  
Author(s):  
Jean-Marc Moncalvo ◽  
François M. Lutzoni ◽  
Stephen A. Rehner ◽  
Jacqui Johnson ◽  
Rytas Vilgalys

2009 ◽  
Vol 42 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Paweł CZARNOTA ◽  
Beata GUZOW-KRZEMIŃSKA

AbstractThe phylogeny of the Micarea prasina group was investigated using mitochondrial small subunit ribosomal DNA sequences from 14 taxa representing this group, four other members of the genus Micarea, and Psilolechia lucida as an outgroup. A total of 31 new mtSSU rDNA sequences were generated, including 10 from the M. micrococca complex. Bayesian, maximum parsimony (MP) and maximum likelihood (ML) methods were used to analyse the data. The results show that M. micrococca is not monophyletic and forms three strongly supported lineages: 1) M. micrococca s. str., 2) M. byssacea (Th. Fr.) Czarnota, Guzow-Krzemińska & Coppins comb. nov., and 3) a putative taxon that requires further studies. Micarea viridileprosa is a sister species to M. micrococca s. str. and the recently described M. nowakii is a sister species to M. prasina s. str. The placement of M. tomentosa within the M. prasina group is confirmed. Micarea hedlundii appears to be more closely related to the M. micrococca complex than M. prasina s. str. Descriptions, illustrations, taxonomic remarks, distribution and habitat data for M. micrococca s. str. and M. byssacea are provided. A lectotype for Biatora byssacea Hampe non Zwackh and a neotype for Catillaria prasina β [var.] byssacea are selected.


Mycologia ◽  
2002 ◽  
Vol 94 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Lisa A. Castlebury ◽  
Amy Y. Rossman ◽  
Walter J. Jaklitsch ◽  
Larissa N. Vasilyeva

2020 ◽  
Vol 45 (1) ◽  
pp. 101-131 ◽  
Author(s):  
W. Wang ◽  
G.Q. Li ◽  
Q.L. Liu ◽  
S.F. Chen

Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, and the translation elongation factor1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang-dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen. nov., Par. eucalypti sp. nov., Par. guangdongensis sp. nov., and Aurifilum terminali sp. nov. Pathogenicity tests showed that the eight species of Cryphonectriaceae are pathogenic to two Eucalyptus hybrid seedlings, Melastoma sanguineum branches, and Psidium guajava and Syzygium jambos seedlings. Theoveralldatashowedthat Chr. deuterocubensis is the most aggressive, followed by Par. eucalypti. Significant differences in tolerance were observed between the two tested Eucalyptus hybrid genotypes, suggesting that disease-tolerant genotypes can be selected for disease management in the Eucalyptus industry.


Sign in / Sign up

Export Citation Format

Share Document