basidiomycetous yeasts
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 11)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Eiji Ishikawa ◽  
Masakazu Ikeda ◽  
Hidetsugu Sotoya ◽  
Minako Anbe ◽  
Hoshitaka Matsumoto ◽  
...  

Abstract Cell-bound β-glycosidases of basidiomycetous yeasts show promise as biocatalysts in galactooligosaccharide (GOS) production. Using degenerated primers designed from Hamamotoa singularis (Hs) bglA gene, we newly identified three genes that encode cell-bound β-glycosidase from Sirobasidium magnum (Sm), Rhodotorula minuta (Rm), and Sterigmatomyces elviae (Se). These three genes, also named bglA, encoded family 1 glycosyl hydrolases with molecular masses of 67‒77 kDa. The BglA enzymes were approximately 44% identical to the Hs-BglA enzyme and possessed a unique domain at the N-terminus comprising 110 or 210 amino acids. The Sm-, Rm-, and Se-BglA enzymes as well as the Hs-BglA enzyme were successfully produced by recombinant Aspergillus oryzae, and all enzymes were entirely secreted to the supernatants. Furthermore, addition of some nonionic detergents (e.g. 0.4% [v/v] Triton-X) increased the production, especially of the Hs- or Se-BglA enzyme. Out of the BglA enzymes, the Se-BglA enzyme showed remarkable thermostability (∼70°C). Additionally, the Sm- and Se-BglA enzymes had better GOS yields, so there was less residual lactose than in others. Accordingly, the basidiomycetous BglA enzymes produced by recombinant A. oryzae would be applicable to GOS production, and the Se-BglA enzyme appeared to be the most promising enzyme for industrial uses.


2021 ◽  
Author(s):  
Nathan P. Siqueira ◽  
Olívia C. Favalessa ◽  
Fernanda H. Maruyama ◽  
Valéria Dutra ◽  
Luciano Nakazato ◽  
...  

AbstractCryptococcosis is an infection caused by encapsulated basidiomycetous yeasts belonging to the Cryptococcus neoformans/Cryptococcus gattii species complexes. It is acquired through inhalation of infectious propagules, often resulting in meningitis and meningoencephalitis. The ecological niche of these agents is a wide variety of trees species, as well as pigeon, parrot and passerine excreta. The objective of this study was to isolate Cryptococcus yeasts from excreta of commercially traded parrots and passerines. The 237 samples were collected between October 2018 and April 2019 and processed using conventional methodologies. Nineteen colonies with a dark brown phenotype, caused by phenol oxidase activity, were isolated, suggesting the presence of pathogenic Cryptococcus yeasts. All isolates tested positive for urease activity. URA5-RFLP fingerprinting identified 14 isolates (68.4%) as C. neoformans (genotype AFLP1/VNI) and 5 (26.3%) as C. deuterogattii (genotype AFLP6/VGII). Multi-locus sequence typing was applied to investigate the relatedness of the C. deuterogattii isolates with those collected globally, showing that those originating from bird-excreta were genetically indistinguishable from some clinical isolates collected during the past two decades.


2021 ◽  
Vol 9 (7) ◽  
pp. 1444
Author(s):  
Jirameth Angchuan ◽  
Pannida Khunnamwong ◽  
Kannika Wongpanit ◽  
Savitree Limtong ◽  
Nantana Srisuk

Yeast diversity in the pia and small-intestinal epithelium of Pon Yang Kham fattening cattle in Thailand was studied using a culture-dependent method. A total of 701 yeasts were isolated from the pia of the duodenum, jejunum, and ileum of the small intestine, while 425 isolates were obtained from the epithelium of all three parts of the small intestine. Yeast identification was performed and ascomycetous yeasts were found at levels of 96.9% and 86.8% in the pia and small intestine, respectively, whereas basidiomycetous yeasts were found at levels of 2.3% and 12.7%. Candida parapsilosis was the species with the highest occurrence in the duodenal and jejunal pia, with an 83.3% and 77.8% frequency of occurrence (FO), respectively. Both C. parapsilosis and C. tropicalis were species with the highest occurrence in the ileum, with a 61.1% FO. Moreover, C. parapsilosis was the species with the highest occurrence in the epithelium of the duodenum, jejunum, and ileum, with FOs of 88.2%, 87.5%, and 87.2%, respectively. Principal coordinate analysis revealed no marked differences in yeast communities from either the pia or epithelium of all three parts of the small intestine. An estimation of the expected richness of the species showed that the observed species richness was lower than the predicted richness.


MYCOBIOTA ◽  
2021 ◽  
Vol 11 ◽  
pp. 1-10
Author(s):  
Cvetomir M. Denchev ◽  
◽  
Teodor T. Denchev ◽  

Two generic names, Meira and Acaromyces, and nineteen species names of basidiomycetous yeasts, earlier proposed and invalidly published, are validated.


2020 ◽  
Vol 70 (8) ◽  
pp. 4704-4713 ◽  
Author(s):  
Benedetta Turchetti ◽  
Ciro Sannino ◽  
Ambra Mezzasoma ◽  
Laura Zucconi ◽  
Silvano Onofri ◽  
...  

Five yeast strains were isolated from soil and sediments collected from Alps and Apennines glaciers during sampling campaigns carried out in summer 2007 and 2017, respectively. Based on morphological and physiological tests and on phylogenetic analyses reconstructed with ITS and D1/D2 sequences, the five strains were considered to belong to two related but hitherto unknown species within the genus Mrakia, in an intermediate position between Mrakia cryoconiti and Mrakia arctica. The names Mrakia stelviica (holotype DBVPG 10734T) and Mrakia montana (holotype DBVPG 10736T) are proposed for the two novel species and a detailed description of their morphological, physiological and phylogenetic features are presented. Both species fermented glucose, sucrose and trehalose, which is an uncommon feature in basidiomycetous yeasts, and showed septate hyphae with teliospore formation.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
Susan Krull ◽  
Malin Lünsmann ◽  
Ulf Prüße ◽  
Anja Kuenz

Itaconic acid is an industrial produced chemical by the sensitive filamentous fungus Aspergillus terreus and can replace petrochemical-based monomers for polymer industry. To produce itaconic acid with alternative renewable substrates, such as lignocellulosic based hydrolysates, a robust microorganism is needed due to varying compositions and impurities. Itaconic acid producing basidiomycetous yeasts of the family Ustilaginaceae provide this required characteristic and the species Ustilago rabenhorstiana was examined in this study. By an optimization of media components, process parameters, and a fed-batch mode with glucose the final titer increased from maximum 33.3 g·L−1 in shake flasks to 50.3 g·L−1 in a bioreactor. Moreover, itaconic acid was produced from different sugar monomers based on renewable feedstocks by U. rabenhorstiana and the robustness against weak acids as sugar degradation products was confirmed. Based on these findings, U. rabenhorstiana has a high potential as alternative natural itaconic acid producer besides the well-known U. maydis and A. terreus.


2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Stanislas C. Morand ◽  
Morgane Bertignac ◽  
Agnes Iltis ◽  
Iris C. R. M. Kolder ◽  
Walter Pirovano ◽  
...  

Malassezia restricta, one of the predominant basidiomycetous yeasts present on human skin, is involved in scalp disorders. Here, we report the complete genome sequence of the lipophilic Malassezia restricta CBS 7877 strain, which will facilitate the study of the mechanisms underlying its commensal and pathogenic roles within the skin microbiome.


Sign in / Sign up

Export Citation Format

Share Document