Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors

2006 ◽  
Vol 23 (8) ◽  
pp. 2035-2047 ◽  
Author(s):  
Isaac Shemer ◽  
Carl Holmgren ◽  
Rogier Min ◽  
Livia Fülöp ◽  
Misha Zilberter ◽  
...  
2013 ◽  
Vol 109 (8) ◽  
pp. 2064-2076 ◽  
Author(s):  
Rie Funahashi ◽  
Takuro Maruyama ◽  
Yumiko Yoshimura ◽  
Yukio Komatsu

Immature excitatory synapses often have NMDA receptors but not AMPA receptors in central neurons, including visual cortical pyramidal neurons. These synapses, called silent synapses, are converted to functional synapses with AMPA receptors by NMDA receptor activation during early development. It is likely that this process underlies the activity-dependent refinement of neuronal circuits and brain functions. In the present study, we investigated postnatal development of excitatory synapses, focusing on the role of visual inputs in the conversion of silent to functional synapses in mouse visual cortex. We analyzed presumably unitary excitatory postsynaptic currents (EPSCs) between a pair of layer 2/3 pyramidal neurons, using minimal stimulation with a patch pipette attached to the soma of one of the pair. The proportion of silent synapses was estimated by the difference in the failure rate between AMPA- and NMDA-EPSCs. In normal development, silent synapses were present abundantly before eye opening, decreased considerably by the critical period of ocular dominance plasticity, and almost absent in adulthood. This decline in silent synapses was prevented by dark rearing. The amplitude of presumably unitary AMPA-EPSCs increased with age, but this increase was suppressed by dark rearing. The quantal amplitude of AMPA-EPSCs and paired-pulse ratio of NMDA-EPSCs both remained unchanged during development, independent of visual experience. These results indicate that visual inputs are required for the conversion of silent to functional synapses and this conversion largely contributes to developmental increases in the amplitude of presumably unitary AMPA-EPSCs.


2001 ◽  
Vol 13 (10) ◽  
pp. 2221-2237 ◽  
Author(s):  
Rajesh P. N. Rao ◽  
Terrence J. Sejnowski

A spike-timing-dependent Hebbian mechanism governs the plasticity of recurrent excitatory synapses in the neocortex: synapses that are activated a few milliseconds before a postsynaptic spike are potentiated, while those that are activated a few milliseconds after are depressed. We show that such a mechanism can implement a form of temporal difference learning for prediction of input sequences. Using a biophysical model of a cortical neuron, we show that a temporal difference rule used in conjunction with dendritic backpropagating action potentials reproduces the temporally asymmetric window of Hebbian plasticity observed physiologically. Furthermore, the size and shape of the window vary with the distance of the synapse from the soma. Using a simple example, we show how a spike-timing-based temporal difference learning rule can allow a network of neocortical neurons to predict an input a few milliseconds before the input's expected arrival.


10.1038/80614 ◽  
2000 ◽  
Vol 3 (11) ◽  
pp. 1098-1106 ◽  
Author(s):  
J. Julius Zhu ◽  
José A. Esteban ◽  
Yasunori Hayashi ◽  
Roberto Malinow

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zuzanna Brzosko ◽  
Sara Zannone ◽  
Wolfram Schultz ◽  
Claudia Clopath ◽  
Ole Paulsen

Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning.


2008 ◽  
Vol 28 (23) ◽  
pp. 6000-6009 ◽  
Author(s):  
E. S. Guire ◽  
M. C. Oh ◽  
T. R. Soderling ◽  
V. A. Derkach

1997 ◽  
Vol 17 (20) ◽  
pp. 7926-7940 ◽  
Author(s):  
Juan A. Varela ◽  
Kamal Sen ◽  
Jay Gibson ◽  
Joshua Fost ◽  
L. F. Abbott ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Maria C Renner ◽  
Eva HH Albers ◽  
Nicolas Gutierrez-Castellanos ◽  
Niels R Reinders ◽  
Aile N van Huijstee ◽  
...  

Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.


2010 ◽  
Vol 107 (36) ◽  
pp. 15975-15980 ◽  
Author(s):  
N. Holbro ◽  
A. Grunditz ◽  
J. S. Wiegert ◽  
T. G. Oertner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document