scholarly journals Speech Perception as a Multimodal Phenomenon

2008 ◽  
Vol 17 (6) ◽  
pp. 405-409 ◽  
Author(s):  
Lawrence D. Rosenblum

Speech perception is inherently multimodal. Visual speech (lip-reading) information is used by all perceivers and readily integrates with auditory speech. Imaging research suggests that the brain treats auditory and visual speech similarly. These findings have led some researchers to consider that speech perception works by extracting amodal information that takes the same form across modalities. From this perspective, speech integration is a property of the input information itself. Amodal speech information could explain the reported automaticity, immediacy, and completeness of audiovisual speech integration. However, recent findings suggest that speech integration can be influenced by higher cognitive properties such as lexical status and semantic context. Proponents of amodal accounts will need to explain these results.

2016 ◽  
Vol 44 (1) ◽  
pp. 185-215 ◽  
Author(s):  
SUSAN JERGER ◽  
MARKUS F. DAMIAN ◽  
NANCY TYE-MURRAY ◽  
HERVÉ ABDI

AbstractAdults use vision to perceive low-fidelity speech; yet how children acquire this ability is not well understood. The literature indicates that children show reduced sensitivity to visual speech from kindergarten to adolescence. We hypothesized that this pattern reflects the effects of complex tasks and a growth period with harder-to-utilize cognitive resources, not lack of sensitivity. We investigated sensitivity to visual speech in children via the phonological priming produced by low-fidelity (non-intact onset) auditory speech presented audiovisually (see dynamic face articulate consonant/rhyme b/ag; hear non-intact onset/rhyme: –b/ag) vs. auditorily (see still face; hear exactly same auditory input). Audiovisual speech produced greater priming from four to fourteen years, indicating that visual speech filled in the non-intact auditory onsets. The influence of visual speech depended uniquely on phonology and speechreading. Children – like adults – perceive speech onsets multimodally. Findings are critical for incorporating visual speech into developmental theories of speech perception.


Author(s):  
Lawrence D. Rosenblum

Research on visual and audiovisual speech information has profoundly influenced the fields of psycholinguistics, perception psychology, and cognitive neuroscience. Visual speech findings have provided some of most the important human demonstrations of our new conception of the perceptual brain as being supremely multimodal. This “multisensory revolution” has seen a tremendous growth in research on how the senses integrate, cross-facilitate, and share their experience with one another. The ubiquity and apparent automaticity of multisensory speech has led many theorists to propose that the speech brain is agnostic with regard to sense modality: it might not know or care from which modality speech information comes. Instead, the speech function may act to extract supramodal informational patterns that are common in form across energy streams. Alternatively, other theorists have argued that any common information existent across the modalities is minimal and rudimentary, so that multisensory perception largely depends on the observer’s associative experience between the streams. From this perspective, the auditory stream is typically considered primary for the speech brain, with visual speech simply appended to its processing. If the utility of multisensory speech is a consequence of a supramodal informational coherence, then cross-sensory “integration” may be primarily a consequence of the informational input itself. If true, then one would expect to see evidence for integration occurring early in the perceptual process, as well in a largely complete and automatic/impenetrable manner. Alternatively, if multisensory speech perception is based on associative experience between the modal streams, then no constraints on how completely or automatically the senses integrate are dictated. There is behavioral and neurophysiological research supporting both perspectives. Much of this research is based on testing the well-known McGurk effect, in which audiovisual speech information is thought to integrate to the extent that visual information can affect what listeners report hearing. However, there is now good reason to believe that the McGurk effect is not a valid test of multisensory integration. For example, there are clear cases in which responses indicate that the effect fails, while other measures suggest that integration is actually occurring. By mistakenly conflating the McGurk effect with speech integration itself, interpretations of the completeness and automaticity of multisensory may be incorrect. Future research should use more sensitive behavioral and neurophysiological measures of cross-modal influence to examine these issues.


2020 ◽  
Author(s):  
Brian A. Metzger ◽  
John F. Magnotti ◽  
Zhengjia Wang ◽  
Elizabeth Nesbitt ◽  
Patrick J. Karas ◽  
...  

AbstractExperimentalists studying multisensory integration compare neural responses to multisensory stimuli with responses to the component modalities presented in isolation. This procedure is problematic for multisensory speech perception since audiovisual speech and auditory-only speech are easily intelligible but visual-only speech is not. To overcome this confound, we developed intracranial encephalography (iEEG) deconvolution. Individual stimuli always contained both auditory and visual speech but jittering the onset asynchrony between modalities allowed for the time course of the unisensory responses and the interaction between them to be independently estimated. We applied this procedure to electrodes implanted in human epilepsy patients (both male and female) over the posterior superior temporal gyrus (pSTG), a brain area known to be important for speech perception. iEEG deconvolution revealed sustained, positive responses to visual-only speech and larger, phasic responses to auditory-only speech. Confirming results from scalp EEG, responses to audiovisual speech were weaker than responses to auditory- only speech, demonstrating a subadditive multisensory neural computation. Leveraging the spatial resolution of iEEG, we extended these results to show that subadditivity is most pronounced in more posterior aspects of the pSTG. Across electrodes, subadditivity correlated with visual responsiveness, supporting a model in visual speech enhances the efficiency of auditory speech processing in pSTG. The ability to separate neural processes may make iEEG deconvolution useful for studying a variety of complex cognitive and perceptual tasks.Significance statementUnderstanding speech is one of the most important human abilities. Speech perception uses information from both the auditory and visual modalities. It has been difficult to study neural responses to visual speech because visual-only speech is difficult or impossible to comprehend, unlike auditory-only and audiovisual speech. We used intracranial encephalography (iEEG) deconvolution to overcome this obstacle. We found that visual speech evokes a positive response in the human posterior superior temporal gyrus, enhancing the efficiency of auditory speech processing.


2018 ◽  
Author(s):  
Muge Ozker ◽  
Michael S. Beauchamp

AbstractAlthough humans can understand speech using the auditory modality alone, in noisy environments visual speech information from the talker’s mouth can rescue otherwise unintelligible auditory speech. To investigate the neural substrates of multisensory speech perception, we recorded neural activity from the human superior temporal gyrus using two very different techniques: either directly, using surface electrodes implanted in five participants with epilepsy (electrocorticography, ECOG), or indirectly, using blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) in six healthy control fMRI participants. Both ECOG and fMRI participants viewed the same clear and noisy audiovisual speech stimuli and performed the same speech recognition task. Both techniques demonstrated a sharp functional boundary in the STG, which corresponded to an anatomical boundary defined by the posterior edge of Heschl’s gyrus. On the anterior side of the boundary, cortex responded more strongly to clear audiovisual speech than to noisy audiovisual speech, suggesting that anterior STG is primarily involved in processing unisensory auditory speech. On the posterior side of the boundary, cortex preferred noisy audiovisual speech or showed no preference and showed robust responses to auditory-only and visual-only speech, suggesting that posterior STG is specialized for processing multisensory audiovisual speech. For both ECOG and fMRI, the transition between the functionally distinct regions happened within 10 mm of anterior-to-posterior distance along the STG. We relate this boundary to the multisensory neural code underlying speech perception and propose that it represents an important functional division within the human speech perception network.


Perception ◽  
10.1068/p5852 ◽  
2007 ◽  
Vol 36 (10) ◽  
pp. 1535-1545 ◽  
Author(s):  
Ian T Everdell ◽  
Heidi Marsh ◽  
Micheal D Yurick ◽  
Kevin G Munhall ◽  
Martin Paré

Speech perception under natural conditions entails integration of auditory and visual information. Understanding how visual and auditory speech information are integrated requires detailed descriptions of the nature and processing of visual speech information. To understand better the process of gathering visual information, we studied the distribution of face-directed fixations of humans performing an audiovisual speech perception task to characterise the degree of asymmetrical viewing and its relationship to speech intelligibility. Participants showed stronger gaze fixation asymmetries while viewing dynamic faces, compared to static faces or face-like objects, especially when gaze was directed to the talkers' eyes. Although speech perception accuracy was significantly enhanced by the viewing of congruent, dynamic faces, we found no correlation between task performance and gaze fixation asymmetry. Most participants preferentially fixated the right side of the faces and their preferences persisted while viewing horizontally mirrored stimuli, different talkers, or static faces. These results suggest that the asymmetrical distributions of gaze fixations reflect the participants' viewing preferences, rather than being a product of asymmetrical faces, but that this behavioural bias does not predict correct audiovisual speech perception.


2020 ◽  
Author(s):  
Anne-Marie Muller ◽  
Tyler C. Dalal ◽  
Ryan A Stevenson

Multisensory integration, the process by which sensory information from different sensory modalities are bound together, is hypothesized to contribute to perceptual symptomatology in schizophrenia, including hallucinations and aberrant speech perception. Differences in multisensory integration and temporal processing, an important component of multisensory integration, have been consistently found among individuals with schizophrenia. Evidence is emerging that these differences extend across the schizophrenia spectrum, including individuals in the general population with higher levels of schizotypal traits. In the current study, we measured (1) multisensory integration using an audiovisual speech-in-noise task, and the McGurk task. Using the speech-in-noise task, we assessed (2) susceptibility to distracting auditory speech to test the hypothesis that increased perception of distracting speech that is subsequently bound with mismatching visual speech contributes to hallucination-like experiences. As a measure of (3) temporal processing, we used the ternary synchrony judgment task. We measured schizotypal traits using the Schizotypal Personality Questionnaire (SPQ), hypothesizing that higher levels of schizotypal traits, specifically Unusual Perceptual Experiences and Odd Speech subscales, would be associated with (1) decreased multisensory integration, (2) increased susceptibility to distracting auditory speech, and (3) less precise temporal processing. Surprisingly, neither subscales were associated with any of the measures. These results suggest that these perceptual differences may not be present across the schizophrenia spectrum.


2020 ◽  
Author(s):  
Jonathan E Peelle ◽  
Brent Spehar ◽  
Michael S Jones ◽  
Sarah McConkey ◽  
Joel Myerson ◽  
...  

In everyday conversation, we usually process the talker's face as well as the sound of their voice. Access to visual speech information is particularly useful when the auditory signal is degraded. Here we used fMRI to monitor brain activity while adults (n = 60) were presented with visual-only, auditory-only, and audiovisual words. As expected, audiovisual speech perception recruited both auditory and visual cortex, with a trend towards increased recruitment of premotor cortex in more difficult conditions (for example, in substantial background noise). We then investigated neural connectivity using psychophysiological interaction (PPI) analysis with seed regions in both primary auditory cortex and primary visual cortex. Connectivity between auditory and visual cortices was stronger in audiovisual conditions than in unimodal conditions, including a wide network of regions in posterior temporal cortex and prefrontal cortex. Taken together, our results suggest a prominent role for cross-region synchronization in understanding both visual-only and audiovisual speech.


Author(s):  
Doğu Erdener

Speech perception has long been taken for granted as an auditory-only process. However, it is now firmly established that speech perception is an auditory-visual process in which visual speech information in the form of lip and mouth movements are taken into account in the speech perception process. Traditionally, foreign language (L2) instructional methods and materials are auditory-based. This chapter presents a general framework of evidence that visual speech information will facilitate L2 instruction. The author claims that this knowledge will form a bridge to cover the gap between psycholinguistics and L2 instruction as an applied field. The chapter also describes how orthography can be used in L2 instruction. While learners from a transparent L1 orthographic background can decipher phonology of orthographically transparent L2s –overriding the visual speech information – that is not the case for those from orthographically opaque L1s.


2014 ◽  
Vol 1079-1080 ◽  
pp. 820-823
Author(s):  
Li Guo Zheng ◽  
Mei Li Zhu ◽  
Qing Qing Wang

This paper proposes a novel algorithm used in extraction of lip feature extraction for to improved efficiency and robustness of lip-reading system. First, Lip Gray Energy Image (LGEI) is used to smooth noise, and improve noise resistance of the system. Second, Discrete Wavelet Analysis (DWT) is used to extract salient visual speech information from lip by decorrelating spectral information. Last, lip features are obtained by downsampling data from second step, the resample can effectively reduce the amount of computation. Experimental results show the performance of this method is exceedingly discriminative, accurate and computation efficient, the precision rate can rate 96%.


2020 ◽  
Author(s):  
Johannes Rennig ◽  
Michael S Beauchamp

AbstractRegions of the human posterior superior temporal gyrus and sulcus (pSTG/S) respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech. We hypothesized that these multisensory responses in pSTG/S underlie the observation that comprehension of noisy auditory speech is improved when it is accompanied by visual speech. To test this idea, we presented audiovisual sentences that contained either a clear auditory component or a noisy auditory component while measuring brain activity using BOLD fMRI. Participants reported the intelligibility of the speech on each trial with a button press. Perceptually, adding visual speech to noisy auditory sentences rendered them much more intelligible. Post-hoc trial sorting was used to examine brain activations during noisy sentences that were more or less intelligible, focusing on multisensory speech regions in the pSTG/S identified with an independent visual speech localizer. Univariate analysis showed that less intelligible noisy audiovisual sentences evoked a weaker BOLD response, while more intelligible sentences evoked a stronger BOLD response that was indistinguishable from clear sentences. To better understand these differences, we conducted a multivariate representational similarity analysis. The pattern of response for intelligible noisy audiovisual sentences was more similar to the pattern for clear sentences, while the response pattern for unintelligible noisy sentences was less similar. These results show that for both univariate and multivariate analyses, successful integration of visual and noisy auditory speech normalizes responses in pSTG/S, providing evidence that multisensory subregions of pSTG/S are responsible for the perceptual benefit of visual speech.Significance StatementEnabling social interactions, including the production and perception of speech, is a key function of the human brain. Speech perception is a complex computational problem that the brain solves using both visual information from the talker’s facial movements and auditory information from the talker’s voice. Visual speech information is particularly important under noisy listening conditions when auditory speech is difficult or impossible to understand alone Regions of the human cortex in posterior superior temporal lobe respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech. We show that the pattern of activity in cortex reflects the successful multisensory integration of auditory and visual speech information in the service of perception.


Sign in / Sign up

Export Citation Format

Share Document