auditory component
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Lisa M. Oakes ◽  
Michaela C. DeBolt ◽  
Aaron G. Beckner ◽  
Annika T. Voss ◽  
Lisa M. Cantrell

Research using eye tracking methods has revealed that when viewing faces, between 6 to 10 months of age, infants begin to shift visual attention from the eye region to the mouth region. Moreover, this shift varies with stimulus characteristics and infants’ experience with faces and languages. The current study examined the eye movements of a racially diverse sample of 98 infants between 7.5 and 10.5 months of age as they viewed movies of White and Asian American women reciting a nursery rhyme (the auditory component of the movies was replaced with music to eliminate the influence of the speech on infants’ looking behavior). Using an analytic approach inspired by the multiverse analysis approach, several measures from infants’ eye gaze were examined to identify patterns that were robust across different analyses. Although in general infants preferred the lower regions of the faces, i.e., the region containing the mouth, this preference depended on the stimulus characteristics and was stronger for infants whose typical experience included faces of more races and for infants who were exposed to multiple languages. These results show how we can leverage the richness of eye tracking data with infants to add to our understanding of the factors that influence infants’ visual exploration of faces.


2021 ◽  
Vol 102 ◽  
pp. 04022
Author(s):  
William L. Martens ◽  
Michael Cohen

When seated users of multimodal augmented reality (AR) systems attempt to navigate unfamiliar environments, they can become disoriented during their initial travel through a remote environment that is displayed for them via that AR display technology. Even when the multimodal displays provide mutually coherent visual, auditory, and vestibular cues to the movement of seated users through a remote environment (such as a maze), those users may make errors in judging their own orientation and position relative to their starting point, and also may have difficulty determining what moves to make in order to return themselves to their starting point. In a number of investigations using multimodal AR systems featuring realtime servocontrolled movement of seated users, the relative contribution of spatial auditory display technology was examined across a variety of spatial navigation scenarios. The results of those investigations have implications for the effective use of the auditory component of a multimodal AR system in applications supporting spatial navigation through a physical environment.


2020 ◽  
Author(s):  
Ľuboš Hládek ◽  
Aaron R Seitz ◽  
Norbert Kopčo

AbstractThe processes of audio-visual integration and of visually-guided re-calibration of auditory distance perception are not well understood. Here, the ventriloquism effect (VE) and aftereffect (VAE) were used to study these processes in a real reverberant environment. Auditory and audio-visual (AV) stimuli were presented, in interleaved trials, over a range of distances from 0.7 to 2.04 m in front of the listener, whose task was to judge the distance of auditory stimuli or of the auditory components of AV stimuli. The relative location of the visual and auditory components of AV stimuli was fixed within a session such that the visual component was presented from distance 30% closer (V-closer) than the auditory component, 30% farther (V-farther), or aligned (V-aligned). The study examined the strength of VE and VAE as a function of the reference distance and of the direction of the visual component displacement, and the temporal profile of the build-up/break-down of these effects. All observed effects were approximately independent of target distance when expressed in logarithmic units. The VE strength, measured in the AV trials, was roughly constant for both directions of visual-component displacement such that, on average, the responses shifted in the direction of the visual component by 72% of the audio-visual disparity. The VAE strength, measured on the interleaved auditory-only trials, was stronger in the V-farther than the V-closer condition (44% vs. 31% of the audio-visual disparity, respectively). The VAE persisted to post-adaptation auditory-only blocks of trials, however it was weaker and the V-farther/V-closer asymmetry was reduced. The rates of build-up/break-down of the VAE were also asymmetrical, with slower adaptation in the V-closer condition. These results suggest that, on a logarithmic scale, the AV distance integration is symmetrical, independent of the direction of induced shift, while the visually-induced auditory distance re-callibration is asymmetrical, stronger and faster when evoked by more distant visual stimuli.


2020 ◽  
Author(s):  
John F. Magnotti ◽  
Kristen B. Dzeda ◽  
Kira Wegner-Clemens ◽  
Michael S. Beauchamp

AbstractThe McGurk effect is widely used as a measure of multisensory integration during speech perception. Two observations have raised questions about the relationship between the effect and everyday speech perception. First, there is high variability in the strength of the McGurk effect across different stimuli and observers. Second, there is low correlation across observers between perception of the McGurk effect and measures of everyday speech perception, such as the ability to understand noisy audiovisual speech. Using the framework of the causal inference of multisensory speech (CIMS) model, we explored the relationship between the McGurk effect, syllable perception, and sentence perception in seven experiments with a total of 296 different participants. Perceptual reports revealed a relationship between the efficacy of different McGurk stimuli created from the same talker and perception of the auditory component of the McGurk stimuli presented in isolation, either with or without added noise. The CIMS model explained this high stimulus-level correlation using the principles of noisy sensory encoding followed by optimal cue combination within a representational space that was identical for McGurk and everyday speech. In other experiments, CIMS successfully modeled low observer-level correlation between McGurk and everyday speech. Variability in noisy speech perception was modeled using individual differences in noisy sensory encoding, while variability in McGurk perception involved additional differences in causal inference. Participants with all combinations of high and low sensory encoding noise and high and low causal inference disparity thresholds were identified. Perception of the McGurk effect and everyday speech can be explained by a common theoretical framework that includes causal inference.


2020 ◽  
Author(s):  
Johannes Rennig ◽  
Michael S Beauchamp

AbstractRegions of the human posterior superior temporal gyrus and sulcus (pSTG/S) respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech. We hypothesized that these multisensory responses in pSTG/S underlie the observation that comprehension of noisy auditory speech is improved when it is accompanied by visual speech. To test this idea, we presented audiovisual sentences that contained either a clear auditory component or a noisy auditory component while measuring brain activity using BOLD fMRI. Participants reported the intelligibility of the speech on each trial with a button press. Perceptually, adding visual speech to noisy auditory sentences rendered them much more intelligible. Post-hoc trial sorting was used to examine brain activations during noisy sentences that were more or less intelligible, focusing on multisensory speech regions in the pSTG/S identified with an independent visual speech localizer. Univariate analysis showed that less intelligible noisy audiovisual sentences evoked a weaker BOLD response, while more intelligible sentences evoked a stronger BOLD response that was indistinguishable from clear sentences. To better understand these differences, we conducted a multivariate representational similarity analysis. The pattern of response for intelligible noisy audiovisual sentences was more similar to the pattern for clear sentences, while the response pattern for unintelligible noisy sentences was less similar. These results show that for both univariate and multivariate analyses, successful integration of visual and noisy auditory speech normalizes responses in pSTG/S, providing evidence that multisensory subregions of pSTG/S are responsible for the perceptual benefit of visual speech.Significance StatementEnabling social interactions, including the production and perception of speech, is a key function of the human brain. Speech perception is a complex computational problem that the brain solves using both visual information from the talker’s facial movements and auditory information from the talker’s voice. Visual speech information is particularly important under noisy listening conditions when auditory speech is difficult or impossible to understand alone Regions of the human cortex in posterior superior temporal lobe respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech. We show that the pattern of activity in cortex reflects the successful multisensory integration of auditory and visual speech information in the service of perception.


2020 ◽  
Author(s):  
Mohamed L. Drame ◽  
Maria Balaet ◽  
Jonathan L. C. Lee

AbstractStudies of memory reconsolidation of pavlovian memories have typically employed unimodal conditioned stimuli, despite the use of multimodal compound stimuli in other settings. Here we studied sign-tracking behaviour to a compound audiovisual stimulus. First, we observed not unexpectedly that sign-tracking was poorer to the audiovisual compound than to unimodal visual stimuli. Then, we showed that, depending on the parameters of compound stimulus re-exposure at memory reactivation, systemic MK-801 treatment either impaired extinction to improve signtracking at test, or disrupted reconsolidation to impair test behaviour. When memory reactivation consisted of re-exposure to only the auditory component of the compound stimulus, we observed sign-tracking impairments following MK-801 treatment, but only under certain test conditions. This was in contrast to the consistent impairment following reactivation with the full audiovisual compound. Moreover, the parameters of auditory stimulus presentation to enable MK-801-induced impairment at test varied depending on whether the stimulus was presented within or outside the training context. These findings suggest that behaviour under the control of appetitive pavlovian compound stimuli can be modulated by targeting both extinction and reconsolidation, and that it is not necessary to re-expose to the full compound stimulus in order to achieve a degree of modulation of behaviour.


2019 ◽  
Vol 33 (3) ◽  
pp. 165-170 ◽  
Author(s):  
J. K. Hall ◽  
B. Lopes ◽  
H. Yu

Abstract. Heartbeat perception tasks are used to measure interoceptive accuracy. This paper explores the effect of reducing external auditory stimuli on heartbeat perception. Three samples (121 participants in total) performed a heartbeat perception task. Samples 1 and 2 wore ear-protectors and sample 3 did not. There were no differences in interoceptive accuracy between samples 1 and 2 but samples 1 and 2 showed significantly higher interoceptive accuracy than sample 3. These results suggest ear-protectors could be used to manipulate heartbeat perception and that the auditory component of heartbeat perception might be given greater consideration.


2019 ◽  
Vol 32 (3) ◽  
pp. 215-234 ◽  
Author(s):  
Angela Ju ◽  
Emily Orchard-Mills ◽  
Erik van der Burg ◽  
David Alais

Abstract Recent exposure to asynchronous multisensory signals has been shown to shift perceived timing between the sensory modalities, a phenomenon known as ‘temporal recalibration’. Recently, Van der Burg et al. (2013, J Neurosci, 33, pp. 14633–14637) reported results showing that recalibration to asynchronous audiovisual events can happen extremely rapidly. In an extended series of variously asynchronous trials, simultaneity judgements were analysed based on the modality order in the preceding trial and showed that shifts in the point of subjective synchrony occurred almost instantaneously, shifting from one trial to the next. Here we replicate the finding that shifts in perceived timing occur following exposure to a single, asynchronous audiovisual stimulus and by manipulating the spatial location of the audiovisual events we demonstrate that recalibration occurs even when the adapting stimulus is presented in a different location. Timing shifts were also observed when the adapting audiovisual pair were defined only by temporal proximity, with the auditory component presented over headphones rather than being collocated with the visual stimulus. Combined with previous findings showing that timing shifts are independent of stimulus features such as colour and pitch, our finding that recalibration is not spatially specific provides strong evidence for a rapid recalibration process that is solely dependent on recent temporal information, regardless of feature or location. These rapid and automatic shifts in perceived synchrony may allow our sensory systems to flexibly adjust to the variation in timing of neural signals occurring as a result of delayed environmental transmission and differing neural latencies for processing vision and audition.


2017 ◽  
Vol 29 (6) ◽  
pp. 1044-1060 ◽  
Author(s):  
Muge Ozker ◽  
Inga M. Schepers ◽  
John F. Magnotti ◽  
Daniel Yoshor ◽  
Michael S. Beauchamp

Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.


2016 ◽  
Vol 315 (3) ◽  
pp. 16-16
Author(s):  
Anne Pycha
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document