scholarly journals Data-driven density estimation in the presence of additive noise with unknown distribution

Author(s):  
F. Comte ◽  
C. Lacour
Author(s):  
Patrik Puchert ◽  
Pedro Hermosilla ◽  
Tobias Ritschel ◽  
Timo Ropinski

AbstractDensity estimation plays a crucial role in many data analysis tasks, as it infers a continuous probability density function (PDF) from discrete samples. Thus, it is used in tasks as diverse as analyzing population data, spatial locations in 2D sensor readings, or reconstructing scenes from 3D scans. In this paper, we introduce a learned, data-driven deep density estimation (DDE) to infer PDFs in an accurate and efficient manner, while being independent of domain dimensionality or sample size. Furthermore, we do not require access to the original PDF during estimation, neither in parametric form, nor as priors, or in the form of many samples. This is enabled by training an unstructured convolutional neural network on an infinite stream of synthetic PDFs, as unbound amounts of synthetic training data generalize better across a deck of natural PDFs than any natural finite training data will do. Thus, we hope that our publicly available DDE method will be beneficial in many areas of data analysis, where continuous models are to be estimated from discrete observations.


2018 ◽  
Vol 37 (75) ◽  
pp. 779-808 ◽  
Author(s):  
Alex Coad ◽  
Dominik Janzing ◽  
Paul Nightingale

This paper presents a new statistical toolkit by applying three techniques for data-driven causal inference from the machine learning community that are little-known among economists and innovation scholars: a conditional independence-based approach, additive noise models, and non-algorithmic inference by hand. We include three applications to CIS data to investigate public funding schemes for R&D investment, information sources for innovation, and innovation expenditures and firm growth. Preliminary results provide causal interpretations of some previously-observed correlations. Our statistical 'toolkit' could be a useful complement to existing techniques.


1996 ◽  
Vol 29 (10) ◽  
pp. 1719-1736 ◽  
Author(s):  
D. Chaudhuri ◽  
B.B. Chaudhuri ◽  
C.A. Murthy

2021 ◽  
Author(s):  
Azadeh Fakhrzadeh

In this thesis, the problem of data denoising is considered and a new data denoising method is developed. This approach is an adaptive, data-driven thresholding method that is based on Minimum Noiseless Description Length (MNDL). MNDL is an approach to subspace selection which estimates bounds on the desired Mean Square Error (MSE). The subspace minimizing these bounds is chosen as the optimum one. In this research, we explore application of MNDL Subspace Selection (MNDL-SS) as a thresholding method. Although the basic idea and desired criterion of MNDL thresholding and MNDL-SS are the same, the challenges in calculation of the desired criterion in MNDL thresholding are very different. In MNDL-SS, the additive noise effects are in the form of samples of a Chi-Square random variable. However, this assumption does not hold for MNDL thresholding anymore. In this research, we developed a new method for calculation of the desired criterion based on characteristics of noise in thresholding. Our simulation results show that MNDL thresholding outperforms the compared methods. In this thesis, we also explore the area of image denoising. In image denoising approaches, some properties of the image are considered. One of the well known image denoising methods, that outperforms other methods, is BayesShrink. We compare our method with BayesShrink. We show that the results of MNDS thresholding are comparable with BayesShrink in our simulations.


2021 ◽  
Author(s):  
Azadeh Fakhrzadeh

In this thesis, the problem of data denoising is considered and a new data denoising method is developed. This approach is an adaptive, data-driven thresholding method that is based on Minimum Noiseless Description Length (MNDL). MNDL is an approach to subspace selection which estimates bounds on the desired Mean Square Error (MSE). The subspace minimizing these bounds is chosen as the optimum one. In this research, we explore application of MNDL Subspace Selection (MNDL-SS) as a thresholding method. Although the basic idea and desired criterion of MNDL thresholding and MNDL-SS are the same, the challenges in calculation of the desired criterion in MNDL thresholding are very different. In MNDL-SS, the additive noise effects are in the form of samples of a Chi-Square random variable. However, this assumption does not hold for MNDL thresholding anymore. In this research, we developed a new method for calculation of the desired criterion based on characteristics of noise in thresholding. Our simulation results show that MNDL thresholding outperforms the compared methods. In this thesis, we also explore the area of image denoising. In image denoising approaches, some properties of the image are considered. One of the well known image denoising methods, that outperforms other methods, is BayesShrink. We compare our method with BayesShrink. We show that the results of MNDS thresholding are comparable with BayesShrink in our simulations.


1989 ◽  
Vol 23 (1) ◽  
pp. 53-69 ◽  
Author(s):  
Jan Mielniczuk ◽  
Pascal Sarda ◽  
Philippe Vieu

Sign in / Sign up

Export Citation Format

Share Document