scholarly journals Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury

2001 ◽  
Vol 533 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Leonard L. Jones ◽  
Martin Oudega ◽  
Mary Bartlett Bunge ◽  
Mark H. Tuszynski
Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 613
Author(s):  
Katerina Stepankova ◽  
Pavla Jendelova ◽  
Lucia Machova Urdzikova

The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.


2021 ◽  
Vol 16 (3) ◽  
pp. 550 ◽  
Author(s):  
HyunJoon Lee ◽  
RustemRobertovich Islamov ◽  
FilipOlegovich Fadeev ◽  
FaridVagizovich Bashirov ◽  
VaheArshaluysovich Markosyan ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 8896
Author(s):  
Rustem Islamov ◽  
Farid Bashirov ◽  
Filip Fadeev ◽  
Roman Shevchenko ◽  
Andrei Izmailov ◽  
...  

The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.


2004 ◽  
Vol 10 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Jun Liu ◽  
Darren Wolfe ◽  
Shuanglin Hao ◽  
Shaohua Huang ◽  
Joseph C. Glorioso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document