scholarly journals Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high‐intensity knee‐extension exercise in humans

2001 ◽  
Vol 537 (1) ◽  
pp. 291-303 ◽  
Author(s):  
H. B. Rossiter ◽  
S. A. Ward ◽  
J. M. Kowalchuk ◽  
F. A. Howe ◽  
J. R. Griffiths ◽  
...  
2009 ◽  
Vol 94 (6) ◽  
pp. 704-719 ◽  
Author(s):  
Gwenael Layec ◽  
Aurélien Bringard ◽  
Yann Le Fur ◽  
Christophe Vilmen ◽  
Jean-Paul Micallef ◽  
...  

2007 ◽  
Vol 293 (1) ◽  
pp. R392-R401 ◽  
Author(s):  
Andrew M. Jones ◽  
Daryl P. Wilkerson ◽  
Nicolas J. Berger ◽  
Jonathan Fulford

We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 ± 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 ± 2.3 min vs. postintervention group (POST): 19.4 ± 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 ± 1.6 min vs. POST: 22.0 ± 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 ± 13 s vs. POST: 43 ± 10 s) or the trained leg (PRE: 38 ± 8 s vs. POST: 40 ± 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 ± 7 vs. POST: 7 ± 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 ± 8 vs. POST: 12 ± 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.


2009 ◽  
Vol 41 ◽  
pp. 117-118
Author(s):  
Andrew M. Jones ◽  
Peter Krustrup ◽  
Daryl P. Wilkerson ◽  
Jose Calbet ◽  
Jens Bangsbo

2012 ◽  
Vol 37 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Sarah Margaret Cleland ◽  
Juan Manuel Murias ◽  
John Michael Kowalchuk ◽  
Donald Hugh Paterson

This study examined the effects of prior heavy-intensity exercise on the adjustment of pulmonary oxygen uptake (VO2p) and muscle deoxygenation Δ[HHb] during the transition to subsequent heavy-intensity cycling (CE) or knee-extension (KE) exercise. Nine young adults (aged 24 ± 5 years) performed 4 repetitions of repeated bouts of heavy-intensity exercise separated by light-intensity CE and KE, which included 6 min of baseline exercise, a 6-min step of heavy-intensity exercise (H1), 6-min recovery, and a 6-min step of heavy-intensity exercise (H2). Exercise was performed at 50 r·min–1 or contractions per minute per leg. Oxygen uptake (VO2) mean response time was ∼20% faster (p < 0.05) during H2 compared with H1 in both modalities. Phase 2 time constants (τ) were not different between heavy bouts of CE (H1, 29.6 ± 6.5 s; H2, 28.0 ± 4.6 s) or KE exercise (H1, 31.6 ± 6.7 s; H2, 29.8 ± 5.6 s). The VO2 slow component amplitude was lower (p < 0.05) in H2 in both modalities (CE, 0.19 ± 0.06 L·min–1; KE, 0.12 ± 0.07 L·min–1) compared with H1 (CE, 0.29 ± 0.09 L·min–1; KE, 0.18 ± 0.07 L·min–1), with the contribution of the slow component to the total VO2 response reduced (p < 0.05) in H2 during both exercise modes. The effective τHHb was similar between bouts for CE (H1, 18.2 ± 3.0 s; H2, 18.0 ± 3.6 s) and KE exercise (H1, 26.0 ± 7.0 s; H2, 24.0 ± 5.8 s). The ΔHHb slow component was reduced during H2 in both CE and KE (p < 0.05). In conclusion, phase 2 VO2p was unchanged with priming exercise; however, a faster mean response time of VO2p during the heavy-intensity exercise preceded by a priming heavy-intensity exercise was attributed to a smaller slow component and reduced muscle deoxygenation indicative of improved muscle O2 delivery during the second bout of exercise.


1998 ◽  
Vol 78 (5) ◽  
pp. 441-447 ◽  
Author(s):  
J. M. Le Chevalier ◽  
H. Vandewalle ◽  
J. M. Vallier ◽  
M. Wolff ◽  
J. F. Stein

2010 ◽  
Vol 42 ◽  
pp. 632
Author(s):  
Massimo Venturelli ◽  
Fabio Begher ◽  
Federico Schena

Sign in / Sign up

Export Citation Format

Share Document