scholarly journals Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical field stimulation is mediated by nitric oxide

1991 ◽  
Vol 102 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Chun Guang Li ◽  
Michael J. Rand
1997 ◽  
Vol 273 (2) ◽  
pp. G456-G463 ◽  
Author(s):  
M. C. Baccari ◽  
C. Iacoviello ◽  
F. Calamai

The effects of the nitric oxide (NO) synthesis inhibitors, NG-nitro-L-arginine (L-NNA) and NG-nitro-L-arginine methyl ester (L-NAME), on the electrical field stimulation (EFS)-induced inhibitory responses were investigated. EFS caused, in strips contracted by means of substance P (SP), prostaglandin F2 alpha (PGF2 alpha), or carbachol (CCh), a fast relaxant response that, depending on stimulation frequency and strip tension, could be followed by a slower, sustained relaxation. The NO synthesis inhibitors blocked the EFS-induced fast relaxations and often reversed them into contractions; these effects were greatly counteracted in SP- or PGF2 alpha-treated strips by scopolamine or atropine. In CCh-precontracted strips, either L-NNA or L-NAME became progressively unable to block the EFS-induced fast relaxations as the CCh concentration was increased. The NO synthesis inhibitors greatly reduced the sustained relaxant responses elicited either by EFS or exogenous vasoactive intestinal polypeptide (VIP). The results indicate that the NO synthesis inhibitors abolish the neurally induced fast relaxation by interfering with the cholinergic excitatory pathway. The involvement of both VIP and NO in sustained relaxations is also suggested.


Open Medicine ◽  
2009 ◽  
Vol 4 (2) ◽  
pp. 192-197 ◽  
Author(s):  
A. Canda ◽  
Christopher Chapple ◽  
Russ Chess-Williams

AbstractThe aim of the study was to determine pathways involved in contraction and relaxation of the mouse urinary bladder. Mouse bladder strips were set up in gassed Krebs-bicarbonate solution and responses to various drugs and electrical field stimulation were obtained. Isoprenaline (b-receptor agonist) caused a 63% inhibition of carbachol precontracted detrusor (EC50=2nM). Carbachol caused contraction (EC50=0.3µM), responses were antagonised more potently by 4-DAMP (M3-antagonist) than methoctramine (M2-antagonist). Electrical field stimulation caused contraction, which was inhibited by atropine (60%) and less by guanethidine and α,β-methylene-ATP. The neurogenic responses were not potentiated by inhibition of nitric oxide synthase. Presence of an intact urothelium significantly depressed responses to carbachol (p=0.02) and addition of indomethacin and L-NNA to remove prostaglandin and nitric oxide production respectively did not prevent the inhibitory effect of the urothelium. In conclusion, b-receptor agonists cause relaxation and muscarinic agonists cause contraction via the M3-receptor. Acetylcholine is the main neurotransmitter causing contraction while nitric oxide has a minor role. The mouse and human urothelium are similar in releasing a factor that inhibits contraction of the detrusor muscle which is unidentified but is not nitric oxide or a prostaglandin. Therefore, the mouse may be used as a model to study the lower urinary tract.


1986 ◽  
Vol 70 (6) ◽  
pp. 571-575 ◽  
Author(s):  
Christopher Murlas

1. The contractile response to histamine, acetylcholine (ACh), KCl or electrical field stimulation (EFS) was examined in paired tracheal rings (one of each being denuded by mucosal rubbing), which were mounted in muscle chambers filled with a continuously aerated physiological salt solution at 37°C. 2. Removal of the respiratory mucosa increased the sensitivity of airway muscle to ACh, histamine and EFS, but not to KCl. The hypersensitivity of denuded rings to histamine and EFS was greater than to ACh. Atropine reduced the histamine hypersensitivity observed. 3. Pretreating intact preparations with indomethacin augmented their responsiveness to EFS, histamine and ACh. 4. Indomethacin augmentation of histamine- and EFS-induced responses was greater in preparations without epithelium. 5. We conclude that the airway mucosa may be associated with a factor that reduces airway smooth muscle responsiveness to stimulation.


Sign in / Sign up

Export Citation Format

Share Document