scholarly journals Effects of selective ETB-receptor stimulation on arterial, venous and capillary functions in cat skeletal muscle

1994 ◽  
Vol 112 (3) ◽  
pp. 887-894 ◽  
Author(s):  
Ulf Ekelund ◽  
Mikael Adner ◽  
Lars Edvinsson ◽  
Stefan Mellander
2002 ◽  
Vol 93 (6) ◽  
pp. 2112-2121 ◽  
Author(s):  
Gunvor Ahlborg ◽  
Jonas Lindström

Cardiovascular diseases are characterized by insulin resistance and elevated endothelin (ET)-1 levels. Furthermore, ET-1 induces insulin resistance. To elucidate this mechanism, six healthy subjects were studied during a hyperinsulinemic euglycemic clamp during infusion of (the ET-1 precursor) big ET-1 alone or after ETA- or ETB-receptor blockade. Insulin levels rose after big ET-1 with or without the ETB antagonist BQ-788 ( P < 0.05) but were unchanged after the ETA antagonist BQ-123 + big ET-1. Infused glucose divided by insulin fell after big ET-1 with or without BQ-788 ( P < 0.05). Insulin and infused glucose divided by insulin values were normalized by ETA blockade. Mean arterial blood pressure rose during big ET-1 with or without BQ-788 ( P < 0.001) but was unchanged after BQ-123. Skeletal muscle, splanchnic, and renal blood flow responses to big ET-1 were abolished by BQ-123. ET-1 levels rose after big ET-1 ( P< 0.01) in a similar way after BQ-123 or BQ-788, despite higher elimination capacity after ETA blockade. In conclusion, ET-1-induced reduction in insulin sensitivity and clearance as well as splanchnic and renal vasoconstriction are ETA mediated. ETA-receptor stimulation seems to inhibit the conversion of big ET-1 to ET-1.


1995 ◽  
Vol 268 (6) ◽  
pp. H2260-H2266
Author(s):  
N. P. Curzen ◽  
M. J. Griffiths ◽  
T. W. Evans

Sepsis is characterized by hyporesponsiveness of vascular smooth muscle to pressor agents. Levels of the potent vasoconstrictor, endothelin-1 (ET-1), are elevated in animal models of sepsis and in patients. This study assesses the contractile response of pulmonary artery from endotoxin-pretreated rats to ET-1 to determine whether this contraction is modified by the endothelium. Both intact and denuded rings from endotoxin-pretreated rats exhibited hyporesponsiveness to ET-1, but the endothelium was found to be essential for maximal ET-1-induced contraction. Upon pretreatment of vessels with the cyclooxygenase inhibitor, indomethacin (10(-5) M), the novel ETB-receptor antagonist, BQ-788 (10(-8) and 10(-6) M), and the thromboxane A2-receptor antagonist, ICI-192605 (10(-5) M), each of these agents caused a reduction in the ET-1-induced contraction of endotoxin-pretreated rat pulmonary artery only in the presence of the endothelium but had no effect in endothelium-denuded vessels or in sham-treated groups. These findings demonstrate that ET-1-induced contraction in pulmonary arteries from septic rats is partially dependent upon an endothelially derived cyclooxygenase product, the release of which appears to involve ETB-receptor stimulation.


2008 ◽  
Vol 295 (2) ◽  
pp. F360-F368 ◽  
Author(s):  
Tiffany L. Thai ◽  
William J. Arendshorst

ADP-ribosyl cyclase (ADPR cyclase) and ryanodine receptors (RyR) participate in calcium transduction in isolated afferent arterioles. We hypothesized that this signaling pathway is activated by ETA and ETB receptors in the renal vasculature to mediate vasoconstriction in vivo. To test this, we measured acute renal blood flow (RBF) responses to ET-1 in anesthetized rats and mice in the presence and absence of functional ADPR cyclase and/or RyR. Inhibitors of ADPR cyclase (nicotinamide) or RyR (ruthenium red) reduced RBF responses to ET-1 by 44% ( P < 0.04 for both) in Sprague-Dawley rats. Mice lacking the predominant form of ADPR cyclase (CD38−/−) had RBF responses to ET-1 that were 47% weaker than those seen in wild-type mice ( P = 0.01). Selective ETA receptor stimulation (ET-1+BQ788) produced decreases in RBF that were attenuated by 43 and 56% by nicotinamide or ruthenium red, respectively ( P < 0.02 for both). ADPR cyclase or RyR inhibition also reduced vasoconstrictor effects of the ETB receptor agonist sarafotoxin 6c (S6c; 77 and 54%, respectively, P < 0.02 for both). ETB receptor stimulation by ET-1 + the ETA receptor antagonist BQ123 elicited responses that were attenuated by 59 and 60% by nicotinamide and ruthenium red, respectively ( P < 0.01 for both). Nicotinamide attenuated RBF responses to S6c by 54% during inhibition of nitric oxide synthesis ( P = 0.001). We conclude that in the renal microcirculation in vivo 1) ET-1-induced vasoconstriction is mediated by ADPR cyclase and RyR; 2) both ETA and ETB receptors activate this pathway; and 3) ADPR cyclase participates in ETB receptor signaling independently of NO.


2004 ◽  
Vol 287 (3) ◽  
pp. H1194-H1199 ◽  
Author(s):  
Adelino F. Leite-Moreira ◽  
Carmen Brás-Silva

Endothelin (ET)-1 acts on ETA and ETB receptors. The latter include ETB1 (endothelial) and ETB2 (muscular) subtypes, which mediate opposite effects on vascular tone. This study investigated, in rabbit papillary muscles ( n = 84), the myocardial effects of ETB stimulation. ET-1 (10−9 M) was given in the absence or presence of BQ-123 (ETA antagonist). The effects of IRL-1620 (ETB1 agonist, 10−10–10−6 M) or sarafotoxin S6c (ETB agonist, 10−10–10−6 M) were evaluated in muscles with intact or damaged endocardial endothelium (EE); intact EE, in the presence of NG-nitro-l-arginine (l-NNA); and intact EE, in the presence of indomethacin (Indo). Sarafotoxin S6c effects were also studied in the presence of BQ-788 (ETB2 antagonist). ET-1 alone increased 64 ± 18% active tension (AT) but decreased it by 4 ± 2% in the presence of BQ-123. In muscles with intact EE, sarafotoxin S6c alone did not significantly alter myocardial performance. Sarafotoxin S6c (10−6 M) increased, however, AT by 120 ± 27% when EE was damaged and by 39 ± 8% or 23 ± 6% in the presence of l-NNA or Indo, respectively. In the presence of BQ-788, sarafotoxin S6c decreased AT (21 ± 3% at 10−6 M) in muscles with intact EE, an effect that was abolished when EE was damaged. IRL-1620 also decreased AT (22 ± 3% at 10−6 M) in muscles with intact EE, an effect that was abolished when EE was damaged or in the presence of l-NNA or Indo. In conclusion, the ETB-mediated negative inotropic effect is presumably due to ETB1 stimulation, requires an intact EE, and is mediated by NO and prostaglandins, whereas the ETB-mediated positive inotropic effect, observed when EE was damaged or NO and prostaglandins synthesis inhibited, is presumably due to ETB2 stimulation.


2004 ◽  
Vol 287 (1) ◽  
pp. H144-H149 ◽  
Author(s):  
John B. Buckwalter ◽  
Jason J. Hamann ◽  
Heidi A. Kluess ◽  
Philip S. Clifford

There is evidence that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is released with norepinephrine from sympathetic nerves. We hypothesized that NPY Y1 receptor stimulation would produce vasoconstriction in resting and exercising skeletal muscle. Nine mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective NPY Y1 receptor agonist [Leu31,Pro34]NPY was infused as a bolus into the femoral artery catheter at rest and during mild, moderate, and heavy exercise. Intra-arterial infusions of [Leu31,Pro34]NPY elicited reductions ( P < 0.05) in vascular conductance of 38 ± 3, 25 ± 2, 17 ± 1, and 11 ± 1% at rest, 3 miles/h, 6 miles/h, and 6 miles/h and 10% grade, respectively. The agonist infusions did not affect ( P > 0.05) blood flow in the contralateral iliac artery. To examine whether nitric oxide (NO) is responsible for the attenuated vasoconstrictor response during exercise to NPY Y1 receptor stimulation, the infusions were repeated after NO synthase blockade. These infusions yielded reductions ( P < 0.05) in vascular conductance of 47 ± 3, 23 ± 2, 19 ± 3, and 12 ± 2% at rest, 3 miles/h, 6 miles/h, and 6 miles/h and 10% grade, respectively. NPY Y1 receptor responsiveness was attenuated ( P < 0.05) during exercise compared with rest. Blockade of NO production did not affect ( P > 0.05) the attenuation of NPY Y1 receptor responsiveness during exercise. These data support the hypothesis that NPY Y1 receptors can produce vasoconstriction in exercising skeletal muscle.


2004 ◽  
Vol 107 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Martin E. BEYER ◽  
Tobias HÖVELBORN ◽  
Ursula DELABAR ◽  
Hans Martin HOFFMEISTER

The main aim of the present study was to investigate the direct inotropic effects of stimulation of the endothelin (ET) receptor ETA under in vivo conditions. It is well known that ETA receptor stimulation causes pronounced vasoconstriction. The ET-1-induced coronary vasoconstriction may lead to myocardial ischaemia and, consequently, to cardiodepressor effects that may mask the direct positive inotropic effect of ETA receptor stimulation. Thus, in the present study, steps were taken to avoid this possibility. In anaesthetized open-chest rats the haemodynamic and inotropic effects of ETA receptor stimulation were studied by monitoring responses evoked by ET-1 (1 nmol/kg of body weight) after ETB receptor blockade with BQ 788 (0.5 μmol/kg of body weight); these responses were compared with saline controls (after ETB receptor blockade). To avoid vasoconstrictor effects induced by ETA receptor stimulation, additional experiments were performed in the presence of the vasodilator adenosine (2.0 mg·kg−1 of body weight·min−1). Myocardial function was also examined during aortic clamping so as to circumvent the effect of changes in afterload. We studied further the effect of ETA receptor stimulation on myocardial energy metabolism. ETA receptor stimulation reduced cardiac output (−49% compared with control), raised total peripheral resistance (+173%) and reduced myocardial ATP content (−23%). Aortic clamping did not reveal a positive inotropic effect of ETA receptor stimulation. Furthermore, even though adenosine attenuated the decrease in cardiac output (−21%), the increase of total peripheral resistance (+48%) and prevented the fall of myocardial ATP content (+6%), this did not unmask a positive inotropic effect of ETA receptor stimulation. Thus we conclude that ETA receptor stimulation causes vasoconstriction and myocardial ischaemia, but has no positive inotropic effects in rats.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 916
Author(s):  
Federica Geddo ◽  
Susanna Antoniotti ◽  
Giulia Querio ◽  
Iris Chiara Salaroglio ◽  
Costanzo Costamagna ◽  
...  

Skeletal muscle plays a pivotal role in whole-body glucose metabolism, accounting for the highest percentage of glucose uptake and utilization in healthy subjects. Impairment of these key functions occurs in several conditions including sedentary lifestyle and aging, driving toward hyperglycemia and metabolic chronic diseases. Therefore, strategies pointed to improve metabolic health by targeting skeletal muscle biochemical pathways are extremely attractive. Among them, we focused on the natural sesquiterpene and cannabinoid type 2 (CB2) receptor agonist Trans-β-caryophyllene (BCP) by analyzing its role in enhancing glucose metabolism in skeletal muscle cells. Experiments were performed on C2C12 myotubes. CB2 receptor membrane localization in myotubes was assessed by immunofluorescence. Within glucose metabolism, we evaluated glucose uptake (by the fluorescent glucose analog 2-NBDG), key enzymes of both glycolytic and oxidative pathways (by spectrophotometric assays and metabolic radiolabeling) and ATP production (by chemiluminescence-based assays). In all experiments, CB2 receptor involvement was tested with the CB2 antagonists AM630 and SR144528. Our results show that in myotubes, BCP significantly enhances glucose uptake, glycolytic and oxidative pathways, and ATP synthesis through a CB2-dependent mechanism. Giving these outcomes, CB2 receptor stimulation by BCP could represent an appealing tool to improve skeletal muscle glucose metabolism, both in physiological and pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document