Induction of Epileptiform Activity by Temperature Elevation in Hippocampal Slices from Young Rats: An In Vitro Model for Febrile Seizures?

Epilepsia ◽  
1992 ◽  
Vol 33 (2) ◽  
pp. 228-234 ◽  
Author(s):  
V. Tancredi ◽  
G. D'Arcangelo ◽  
C. Zona ◽  
A. Siniscalchi ◽  
M. Avoli
2000 ◽  
Vol 83 (2) ◽  
pp. 723-734 ◽  
Author(s):  
Melisa W. Y. Ho ◽  
Annette G. Beck-Sickinger ◽  
William F. Colmers

Neuropeptide Y (NPY) potently inhibits excitatory synaptic transmission in the hippocampus, acting predominantly via a presynaptic Y2 receptor. Recent reports that the Y5 receptor may mediate the anticonvulsant actions of NPY in vivo prompted us to test the hypothesis that Y5receptors inhibit synaptic excitation in the hippocampal slice and, furthermore, that they are effective in an in vitro model of anticonvulsant action. Two putative Y5 receptor–preferring agonists inhibited excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in pyramidal cells. We recorded initially from area CA1 pyramidal cells, but subsequently switched to cells from the subiculum, where a much greater frequency of response was observed to Y5 agonist application. Bothd-Trp32NPY (1 μM) and [ahx8–20]Pro34NPY (3 μM), a centrally truncated, Y1/Y5 agonist we synthesized, inhibited stimulus-evoked EPSCs in subicular pyramidal cells by 44.0 ± 5.7% and 51.3 ± 3.5% (mean ± SE), in 37 and 58% of cells, respectively. By contrast, the less selective centrally truncated agonist, [ahx8–20] NPY (1 μM), was more potent (66.4 ± 4.1% inhibition) and more widely effective, suppressing the EPSC in 86% of subicular neurons. The site of action of all NPY agonists tested was most probably presynaptic, because agonist application caused no changes in postsynaptic membrane properties. The selective Y1 antagonist, BIBP3226 (1 μM), did not reduce the effect of either more selective agonist, indicating that they activated presynaptic Y5 receptors. Y5 receptor–mediated synaptic inhibition was more frequently observed in slices from younger animals, whereas the nonselective agonist appeared equally effective at all ages tested. Because of the similarity with the previously reported actions of Y2 receptors, we tested the ability of Y5receptor agonists to suppress stimulus train-induced bursting (STIB), an in vitro model of ictaform activity, in both area CA3 and the subiculum. Neither [ahx8–20]Pro34NPY nord-Trp32NPY were significantly effective in suppressing or shortening STIB-induced afterdischarge, with <20% of slices responding to these agonists in recordings from CA3 and none in subiculum. By contrast, 1 μM each of [ahx8–20]NPY, the Y2 agonist, [ahx5–24]NPY, and particularly NPY itself suppressed the afterdischarge in area CA3 and the subiculum, as reported earlier. We conclude that Y5receptors appear to regulate excitability to some degree in the subiculum of young rats, but their contribution is relatively small compared with those of Y2 receptors, declines with age, and is insufficient to block or significantly attenuate STIB-induced afterdischarges.


2005 ◽  
Vol 93 (4) ◽  
pp. 2302-2317 ◽  
Author(s):  
Chiping Wu ◽  
Wah Ping Luk ◽  
Jesse Gillis ◽  
Frances Skinner ◽  
Liang Zhang

Rodent hippocampal slices of ≤0.5 mm thickness have been widely used as a convenient in vitro model since the 1970s. However, spontaneous population rhythmic activities do not consistently occur in this preparation due to limited network connectivity. To overcome this limitation, we develop a novel slice preparation of 1 mm thickness from adult mouse hippocampus by separating dentate gyrus from CA3/CA1 areas but preserving dentate–CA3-CA1 connectivity. While superfused in vitro at 32 or 37°C, the thick slice exhibits robust spontaneous network rhythms of 1–4 Hz that originate from the CA3 area. Via assessing tissue O2, K+, pH, synaptic, and single-cell activities of superfused thick slices, we verify that these spontaneous rhythms are not a consequence of hypoxia and nonspecific experimental artifacts. We suggest that the thick slice contains a unitary circuitry sufficient to generate intrinsic hippocampal network rhythms and this preparation is suitable for exploring the fundamental properties and plasticity of a functionally defined hippocampal “lamella” in vitro.


2016 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Mark Coburn ◽  
Matthias Krings ◽  
Anke Höllig ◽  
Jingjin Liu ◽  
Linda Grüsser ◽  
...  

Epilepsia ◽  
2000 ◽  
Vol 41 (5) ◽  
pp. 634-634
Author(s):  
Sarah J. Starkey ◽  
Russell M. Hagan ◽  
Xinmin M. Xie

1991 ◽  
Vol 69 (9) ◽  
pp. 1301-1304 ◽  
Author(s):  
Yukiko Fueta ◽  
Massimo Avoli

The effects induced by the antiepileptic drug valproic acid were studied in the CA3 subfield of in vitro hippocampal slices obtained from young (16- to 27-day-old) and adult (over 60-day-old) rats. Spontaneous epileptiform discharges were induced by the addition of the convulsant 4-aminopyridine to the medium. Valproic acid (0.5 mM) selectively blocked the ictal epileptiform discharges in slices obtained from young rats. Interictal epileptiform discharges disappeared during perfusion with higher doses of valproic acid (2 mM). This blockade of interictal epileptiform activity was not observed when valproic acid (0.5–5 mM) was tested in hippocampal slices from adult rats. Thus, in the hippocampus of young rats, 4-aminopyridine-induced ictal activity is more sensitive to valproic acid than are interictal discharges. Moreover, valproic acid is effective in controlling interictal discharges in the young, but not in the adult rat hippocampus.Key words: valproic acid, epilepsy, 4-aminopyridine, hippocampus, rat.


1995 ◽  
Vol 21 (3) ◽  
pp. 195-204 ◽  
Author(s):  
Vivian Valenzuela ◽  
Larry S. Benardo

Sign in / Sign up

Export Citation Format

Share Document