interictal epileptiform discharges
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 87)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Mirandola ◽  
Daniela Ballotta ◽  
Francesca Talami ◽  
Giada Giovannini ◽  
Giacomo Pavesi ◽  
...  

Objective: To evaluate local and distant blood oxygen level dependent (BOLD) signal changes related to interictal epileptiform discharges (IED) in drug-resistant temporal lobe epilepsy (TLE).Methods: Thirty-three TLE patients undergoing EEG–functional Magnetic Resonance Imaging (fMRI) as part of the presurgical workup were consecutively enrolled. First, a single-subject spike-related analysis was performed: (a) to verify the BOLD concordance with the presumed Epileptogenic Zone (EZ); and (b) to investigate the Intrinsic Connectivity Networks (ICN) involvement. Then, a group analysis was performed to search for common BOLD changes in TLE.Results: Interictal epileptiform discharges were recorded in 25 patients and in 19 (58%), a BOLD response was obtained at the single-subject level. In 42% of the cases, BOLD changes were observed in the temporal lobe, although only one patient had a pure concordant finding, with a single fMRI cluster overlapping (and limited to) the EZ identified by anatomo-electro-clinical correlations. In the remaining 58% of the cases, BOLD responses were localized outside the temporal lobe and the presumed EZ. In every patient, with a spike-related fMRI map, at least one ICN appeared to be involved. Four main ICNs were preferentially involved, namely, motor, visual, auditory/motor speech, and the default mode network. At the single-subject level, EEG–fMRI proved to have high specificity (above 65%) in detecting engagement of an ICN and the corresponding ictal/postictal symptom, and good positive predictive value (above 67%) in all networks except the visual one. Finally, in the group analysis of BOLD changes related to IED revealed common activations at the right precentral gyrus, supplementary motor area, and middle cingulate gyrus.Significance: Interictal temporal spikes affect several distant extra-temporal areas, and specifically the motor/premotor cortex. EEG–fMRI in patients with TLE eligible for surgery is recommended not for strictly localizing purposes rather it might be useful to investigate ICNs alterations at the single-subject level.


Author(s):  
Bahman Abdi Sargezeh ◽  
Antonio Valentin ◽  
Gonzalo Alarcon ◽  
David Martin-Lopez ◽  
Saeid Sanei

Abstract Objective. Interictal epileptiform discharges (IEDs) occur between two seizures onsets. IEDs are mainly captured by intracranial recordings and are often invisible over the scalp. This study proposes a model based on tensor factorization to map the time-frequency (TF) features of scalp EEG (sEEG) to the TF features of intracranial EEG (iEEG) in order to detect IEDs from over the scalp with high sensitivity. Approach. Continuous wavelet transform is employed to extract the TF features. Time, frequency, and channel modes of IED segments from iEEG recordings are concatenated into a four-way tensor. Tucker and CANDECOMP/PARAFAC decomposition techniques are employed to decompose the tensor into temporal, spectral, spatial, and segmental factors. Finally, TF features of both IED and non-IED segments from scalp recordings are projected onto the temporal components for classification. Main results. The model performance is obtained in two different approaches: within- and between-subject classification approaches. Our proposed method is compared with four other methods, namely a tensor-based spatial component analysis method, TF-based method, linear regression mapping model, and asymmetric-symmetric autoencoder mapping model followed by convolutional neural networks. Our proposed method outperforms all these methods in both within- and between-subject classification approaches by respectively achieving 84.2% and 72.6% accuracy values. Significance. The findings show that mapping sEEG to iEEG improves the performance of the scalp-based IED detection model. Furthermore, the tensor-based mapping model outperforms the autoencoder- and regression-based mapping models.


2021 ◽  
Author(s):  
C. Cheong Took ◽  
S. Alty ◽  
D. Martin-Lopez ◽  
A. Valentin ◽  
G. Alarcon ◽  
...  

2021 ◽  
pp. 155005942110582
Author(s):  
Nivetha Vasudevan ◽  
Ranjith Kumar Manokaran ◽  
Saji James

Purpose: To investigate whether hyperventilation (HV) for 5 minutes increases the diagnostic yield of electroencephalography (EEG) compared to 3 minutes HV and to determine whether performing HV for 5 minutes is feasible and safe in children. Methods: Data were evaluated from 579 children aged less than 18 years, referred to EEG for epilepsy evaluation. Occurrence of seizures, HV induced interictal epileptiform discharges precipitation and potentiation and adverse events if any were noted during the first 3 minutes and last 2 minutes of HV separately. Results: 398 children (68.7%) completed 5 minutes HV. Seizures were precipitated during the first 3 minutes of HV in 2 children, and during the last 2 minutes in one more child. Inter-ictal EEG abnormalities were precipitated in the first 3 minutes of HV in 31 children, and during the last 2 min in 4 more children. All 398 children completed HV during the last 2 minutes successfully and no adverse events occurred during the last 2 minutes of HV. Conclusion: 33.33% of seizures and 11.5% of inter-ictal EEG abnormalities triggered by HV occurred during the last 2 min of HV. This finding supports the utility of prolonged hyperventilation for 5 minutes. Prolonged HV for 5 minutes increases the diagnostic yield of EEG in paediatric population and it is safe and feasible.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaonan Wu ◽  
Wei Ding ◽  
Xing Ye ◽  
Qiang Wei ◽  
Xinyi Lv ◽  
...  

Objective: Perceptual alternations evoked by binocular rivalry (BR) reflect cortical dynamics strongly dependent on the excitatory–inhibitory balance, suggesting potential utility as a biomarker for epileptogenesis. Therefore, we investigated the characteristics of BR in patients with idiopathic generalized epilepsy (IGE) and potential associations with clinical variables.Methods: Sixty-two healthy controls (HCs) and 94 IGE patients completed BR task. Perceptual alternation rates were compared between HC and IGE groups as well as among the HC group and IGE patients stratified according to the presence or absence of interictal activity on the ambulatory electroencephalogram (EEG), termed the abnormal ambulatory EEG group (AB-AEEG, n = 64) and normal ambulatory EEG group (N-AEEG, n = 30), respectively.Results: The IGE patients demonstrated a slower rate of BR perceptual alternation than HC subjects (t = −4.364, p < 0.001). The alternation rate also differed among the HC, AB-AEEG, and N-AEEG groups (F = 44.962, df = 2, p < 0.001), and post hoc comparisons indicated a significantly slower alternation rate in the AB-AEEG group compared with the N-AEEG and HC groups (0.28 vs. 0.46, and 0.43 Hz). Stepwise linear regression revealed positive correlations between the BR alternation rate and both the ambulatory EEG status (β, 0.173; standard error, 0.022 p < 0.001) and Montreal Cognitive Assessment score (β, 0.013; standard error, 0.004; p = 0.003). Receiver operating characteristic curve analysis of the BR alternation rate distinguished AB-AEEG from N-AEEG subjects with 90.00% sensitivity and 76.90% specificity (area under the curve = 0.881; 95% confidence interval = 0.801– 0.961, cut-off = 0.319). Alternatively, Montreal Cognitive Assessment score did not accurately distinguish AB-AEEG from N-AEEG subjects and the area under the receiver operating characteristic curve combining the BR alternation rate and Montreal Cognitive Assessment score was not markedly larger than that of the BR alternation rate alone (0.894, 95% confidence interval = 0.822–0.966, p < 0.001). K-fold cross-validation was used to evaluate the predictive performance of BR alternation rate, MoCA score, and the combination of both, which yielded average AUC values of 0.870, 0.584 and 0.847, average sensitivity values of 89.36, 92.73, and 91.28%, and average specificity values of 62.25, 13.42, and 61.78%, respectively. The number of interictal epileptiform discharges was significantly correlated with the alternation rate in IGE patients (r = 0.296, p = 0.018). A forward stepwise linear regression model identified the number of interictal epileptiform discharges (β, 0.001; standard error, 0.001; p = 0.025) as an independent factor associated with BR alternation rate in these patients.Conclusion: These results suggest that interictal epileptiform discharges are associated with disruptions in perceptual awareness, and that the BR may be a useful auxiliary behavioral task to diagnosis and dynamically monitor IGE patients with interictal discharge.


Author(s):  
N Mortazavi ◽  
M Khaki ◽  
G Gilmore ◽  
J Burneo ◽  
D Steven ◽  
...  

Background: Interictal epileptiform discharges (IEDs) are known as epilepsy biomarkers for seizure detection, and It is essential for clinicians to detect them from from physiological events with similar temporal frequency characteristics. Methods: We analyzed the SEEG recordings obtained from patients with medically-resistant epilepsy (MRE) implanted with DE at the Western University Hospital Epilepsy Unit. The data were cleaned, denoised, montaged and segmented based on the clinical annotations, such as sleep intervals and observed Ictals. For event detection, the signal waveform and its power were extracted symmetrically in non-overlapping intervals of 500 ms. Each waveform’s power across all detected spikes was computed and clustered based on their energy distributions. Results: The recordings included thirteen sessions of 24 hours of extracellular recordings from two patients, with 312 hours extracted from four hippocampus electrodes anterior and posterior hippocampus. Our results indicate IEDs carrying the most different characteristics in the bands [25-75] Hz; SWR, on the other hand, are distributed between [80-170] Hz. Conclusions: Our algorithm detected and successfully distinguished IED from SWRs based on their carrying energy during non-sleep periods. Also, the most powerful spectral features that they were distinguished from occur in [15-30] Hz and [75-90] Hz.


2021 ◽  
Vol 71 (5) ◽  
pp. 1727-31
Author(s):  
Saima Shafait ◽  
Wasim Alamgir ◽  
Imran Ahmad ◽  
Saeed Arif ◽  
Jahanzeb Liaqat ◽  
...  

Objective: To compare the yield of interictal epileptiform discharges on prolonged (1-2 hours) electroencephalogram (EEG) as compared to standard routine (30 minutes) electroencephalogram (EEG). Study Design: Comparative observational study. Place and Duration of Study: Pak Emirates Military Hospital, Rawalpindi from Oct 2019 to Sep 2020. Methodology: A total of 364 outdoor patients with suspected epilepsy were recruited for the study. Out of these 55 electroencephalograms were excluded after applying exclusion criteria and 309 were included for final analysis. Electro-encephalograms were recorded using a 10-20 international system of electrode placement. The duration of each standard electroencephalogram was 30 minutes. It was followed by recording for an extended period of 60 minutes at least. The time to the appearance of the first abnormal interictal epileptiform discharge was noted. For analytical purposes, epileptiform discharges were classified as “early” if they appeared within the first 30 minutes and as “late” if appeared afterward. All electro-encephalograms were evaluated independently by two neurologists. Results: A total of 309 electroencephalograms were included for final analysis. Interictal epileptiform discharges were seen in 48 (15.6%) recordings. The mean time to appearance of first interictal epileptiform discharge was 14.6 ± 19.09 minutes. In 36 (11.7%) cases, discharges appeared early (within the first 30 minutes) whereas in the remaining 12 (3.9%) cases, discharges appeared late. This translates into a 33% increase in the diagnostic yield of electroencephalogram with an extended period of recording. Conclusion: Extending the electroencephalogram recording time results in a significantly better diagnostic yield of outdoor electroencephalogram.


2021 ◽  
Vol 13 (3) ◽  
pp. 249-253
Author(s):  
S. Gopinath ◽  
A. Pillai ◽  
A. G. Diwan ◽  
J. V. Pattisapu ◽  
K. Radhakrishnan

Lennox–Gastaut syndrome (LGS) is an epileptic encephalopathy characterized by delayed mental development and intractable multiple seizure types, predominantly tonic. Drop attacks are the commonest and the most disabling type of seizures. Resective surgery is often not possible in LGS as the electroencephalogram (EEG) abnormalities are usually multifocal and generalized, and magnetic resonance image is often either normal or multilesional. We report a case of LGS with bilateral parieto-occipital gliosis where EEG before and after callosotomy demonstrated synchronized bilateral interictal epileptiform discharges and ictal discharges becoming desynchronized and running down. This phenomenon emphasizes the role of the corpus callosum in secondary bilateral synchrony.


Sign in / Sign up

Export Citation Format

Share Document