Size Does Matter: Generation of Intrinsic Network Rhythms in Thick Mouse Hippocampal Slices

2005 ◽  
Vol 93 (4) ◽  
pp. 2302-2317 ◽  
Author(s):  
Chiping Wu ◽  
Wah Ping Luk ◽  
Jesse Gillis ◽  
Frances Skinner ◽  
Liang Zhang

Rodent hippocampal slices of ≤0.5 mm thickness have been widely used as a convenient in vitro model since the 1970s. However, spontaneous population rhythmic activities do not consistently occur in this preparation due to limited network connectivity. To overcome this limitation, we develop a novel slice preparation of 1 mm thickness from adult mouse hippocampus by separating dentate gyrus from CA3/CA1 areas but preserving dentate–CA3-CA1 connectivity. While superfused in vitro at 32 or 37°C, the thick slice exhibits robust spontaneous network rhythms of 1–4 Hz that originate from the CA3 area. Via assessing tissue O2, K+, pH, synaptic, and single-cell activities of superfused thick slices, we verify that these spontaneous rhythms are not a consequence of hypoxia and nonspecific experimental artifacts. We suggest that the thick slice contains a unitary circuitry sufficient to generate intrinsic hippocampal network rhythms and this preparation is suitable for exploring the fundamental properties and plasticity of a functionally defined hippocampal “lamella” in vitro.

2006 ◽  
Vol 18 (1-3) ◽  
pp. 1-8 ◽  
Author(s):  
Marcel Halbach ◽  
Frank Pillekamp ◽  
Konrad Brockmeier ◽  
Jürgen Hescheler ◽  
Jochen Müller-Ehmsen ◽  
...  

2000 ◽  
Vol 83 (2) ◽  
pp. 723-734 ◽  
Author(s):  
Melisa W. Y. Ho ◽  
Annette G. Beck-Sickinger ◽  
William F. Colmers

Neuropeptide Y (NPY) potently inhibits excitatory synaptic transmission in the hippocampus, acting predominantly via a presynaptic Y2 receptor. Recent reports that the Y5 receptor may mediate the anticonvulsant actions of NPY in vivo prompted us to test the hypothesis that Y5receptors inhibit synaptic excitation in the hippocampal slice and, furthermore, that they are effective in an in vitro model of anticonvulsant action. Two putative Y5 receptor–preferring agonists inhibited excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in pyramidal cells. We recorded initially from area CA1 pyramidal cells, but subsequently switched to cells from the subiculum, where a much greater frequency of response was observed to Y5 agonist application. Bothd-Trp32NPY (1 μM) and [ahx8–20]Pro34NPY (3 μM), a centrally truncated, Y1/Y5 agonist we synthesized, inhibited stimulus-evoked EPSCs in subicular pyramidal cells by 44.0 ± 5.7% and 51.3 ± 3.5% (mean ± SE), in 37 and 58% of cells, respectively. By contrast, the less selective centrally truncated agonist, [ahx8–20] NPY (1 μM), was more potent (66.4 ± 4.1% inhibition) and more widely effective, suppressing the EPSC in 86% of subicular neurons. The site of action of all NPY agonists tested was most probably presynaptic, because agonist application caused no changes in postsynaptic membrane properties. The selective Y1 antagonist, BIBP3226 (1 μM), did not reduce the effect of either more selective agonist, indicating that they activated presynaptic Y5 receptors. Y5 receptor–mediated synaptic inhibition was more frequently observed in slices from younger animals, whereas the nonselective agonist appeared equally effective at all ages tested. Because of the similarity with the previously reported actions of Y2 receptors, we tested the ability of Y5receptor agonists to suppress stimulus train-induced bursting (STIB), an in vitro model of ictaform activity, in both area CA3 and the subiculum. Neither [ahx8–20]Pro34NPY nord-Trp32NPY were significantly effective in suppressing or shortening STIB-induced afterdischarge, with <20% of slices responding to these agonists in recordings from CA3 and none in subiculum. By contrast, 1 μM each of [ahx8–20]NPY, the Y2 agonist, [ahx5–24]NPY, and particularly NPY itself suppressed the afterdischarge in area CA3 and the subiculum, as reported earlier. We conclude that Y5receptors appear to regulate excitability to some degree in the subiculum of young rats, but their contribution is relatively small compared with those of Y2 receptors, declines with age, and is insufficient to block or significantly attenuate STIB-induced afterdischarges.


2008 ◽  
Vol 14 ◽  
pp. S150-S153 ◽  
Author(s):  
Ezia Guatteo ◽  
Maria Letizia Cucchiaroni ◽  
Luca Sebastianelli ◽  
Giorgio Bernardi ◽  
Nicola Biagio Mercuri

2016 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Mark Coburn ◽  
Matthias Krings ◽  
Anke Höllig ◽  
Jingjin Liu ◽  
Linda Grüsser ◽  
...  

Stroke ◽  
1988 ◽  
Vol 19 (4) ◽  
pp. 498-502 ◽  
Author(s):  
W Q Dong ◽  
A Schurr ◽  
K H Reid ◽  
C B Shields ◽  
C A West

Epilepsia ◽  
2000 ◽  
Vol 41 (5) ◽  
pp. 634-634
Author(s):  
Sarah J. Starkey ◽  
Russell M. Hagan ◽  
Xinmin M. Xie

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Stéphane D. Girard ◽  
Isabelle Virard ◽  
Emmanuelle Lacassagne ◽  
Jean-Michel Paumier ◽  
Hanae Lahlou ◽  
...  

Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive. Using an in vitro model of blood-brain barrier (BBB) and secretome analysis, we observed that OE-MSCs produce numerous proteins allowing them to cross the endothelial wall. Then, pan-genomic DNA microarrays identified signaling molecules that lesioned mouse hippocampus overexpressed. Among the most upregulated cytokines, both recombinant SPP1/osteopontin and CCL2/MCP-1 stimulate OE-MSC migration whereas only CCL2 exerts a chemotactic effect. Additionally, OE-MSCs express SPP1 receptors but not the CCL2 cognate receptor, suggesting a CCR2-independent pathway through other CCR receptors. These results confirm that OE-MSCs can be attracted by chemotactic cytokines overexpressed in inflamed areas and demonstrate that CCL2 is an important factor that could promote OE-MSC engraftment, suggesting improvement for future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document