CALCIUM DEFICIENCY CAN INDUCE THE TRANSITION FROM OVAL TO FUSIFORM CELLS IN CULTURES OF PHAEODACTYLUM TRICORNUTUM BOHLIN1, 2

1974 ◽  
Vol 10 (1) ◽  
pp. 89-90 ◽  
Author(s):  
Keith E. Cooksey ◽  
Barbara Cooksey
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dalila Lopes da Silva ◽  
Renato de Mello Prado ◽  
Luis Felipe Lata Tenesaca ◽  
José Lucas Farias da Silva ◽  
Ben-Hur Mattiuz

AbstractCalcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutrient solution reduces, in fact, the calcium deficiency effects on cabbage plants. In a greenhouse, cabbage plants were grown using nutrient solutions with Ca sufficiency and Ca deficiency (5 mM) without and with added silicon (2.5 mM), arranged as a 2 × 2 factorial in randomized blocks, with five replications. At 91 days after transplanting, the plants were harvested for biological evaluations. In the treatment without added Si, Ca deficiency promoted oxidative stress, low antioxidant content, decreased dry matter, and lower quality leaf. On the other hand, added Si attenuated Ca deficiency in cabbage by decreasing cell extravasation while increasing both ascorbic acid content and fresh and dry matter, providing firmer leaves due to diminished leaf water loss after harvesting. We highlighted the agronomic importance of Si added to the nutrient solution, especially in crops at risk of Ca deficiency.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kaidian Zhang ◽  
Zhi Zhou ◽  
Jiashun Li ◽  
Jingtian Wang ◽  
Liying Yu ◽  
...  

AbstractPhosphorus (P) is an essential nutrient for marine phytoplankton. Maintaining intracellular P homeostasis against environmental P variability is critical for phytoplankton, but how they achieve this is poorly understood. Here we identify a SPX gene and investigate its role in Phaeodactylum tricornutum. SPX knockout led to significant increases in the expression of phosphate transporters, alkaline phosphatases (the P acquisition machinery) and phospholipid hydrolases (a mechanism to reduce P demand). These demonstrate that SPX is a negative regulator of both P uptake and P-stress responses. Furthermore, we show that SPX regulation of P uptake and metabolism involves a phosphate starvation response regulator (PHR) as an intermediate. Additionally, we find the SPX related genes exist and operate across the phytoplankton phylogenetic spectrum and in the global oceans, indicating its universal importance in marine phytoplankton. This study lays a foundation for better understanding phytoplankton adaptation to P variability in the future changing oceans.


2021 ◽  
Author(s):  
Richard Smith ◽  
Juliette Jouhet ◽  
Chiara Gandini ◽  
Vladimir Nekrasov ◽  
Eric Marechal ◽  
...  

2021 ◽  
Vol 53 ◽  
pp. 102159
Author(s):  
Matthias Windhagauer ◽  
Raffaela M. Abbriano ◽  
Justin Ashworth ◽  
Lorenzo Barolo ◽  
Ana Cristina Jaramillo-Madrid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document