alkaline phosphatases
Recently Published Documents


TOTAL DOCUMENTS

608
(FIVE YEARS 25)

H-INDEX

55
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2555
Author(s):  
Adrian Esteban Ortega-Torres ◽  
Enrique Rico-García ◽  
Rosario Guzmán-Cruz ◽  
Irineo Torres-Pacheco ◽  
Erik Gustavo Tovar-Pérez ◽  
...  

Agriculture depends on fertilizers to provide nutrients for plants. Phosphorus (P) is one of these nutrients and is the second-most necessary for plant growth. Global production of P fertilizer is concentrated in Morocco, China and the United States. A large amounts of P resources are found in organic wastes that can be transformed through phosphate-solubilizing microorganisms during the composting process. In this study, we first determined the enzymatic activity of phosphatases and phytase from Pseudomonas aeruginosa ATC 15442. Second, we evaluated the mineralization of P in mature compost when inoculated with P. aeruginosa ATC 15442, phytases, a cocktail of phosphate-solubilizing enzymes and their combinations. Finally, we evaluated different concentrations of the cocktail trying to release more P in the compost. The results indicated that P. aeruginosa exuded alkaline phosphatases, acid phosphatase, neutral phosphatase and phytase. The enzymatic cocktail increased inorganic P (Pi) when added to the mature compost: this was able to release up to 95% more Pi in the compost compared to the amount of Pi released in the control compost. The current study demonstrated the importance of adding the cocktail to enhance Pi in mature compost; however, further studies are required to confirm the results and practical applications.


Biologia ◽  
2021 ◽  
Author(s):  
Adriano Marques Gonçalves ◽  
Caroline Carla Santana ◽  
Luiz Flávio José Dos Santos ◽  
Rafael Rodrigues Colosio ◽  
Tiago Santana Balbuena ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kaidian Zhang ◽  
Zhi Zhou ◽  
Jiashun Li ◽  
Jingtian Wang ◽  
Liying Yu ◽  
...  

AbstractPhosphorus (P) is an essential nutrient for marine phytoplankton. Maintaining intracellular P homeostasis against environmental P variability is critical for phytoplankton, but how they achieve this is poorly understood. Here we identify a SPX gene and investigate its role in Phaeodactylum tricornutum. SPX knockout led to significant increases in the expression of phosphate transporters, alkaline phosphatases (the P acquisition machinery) and phospholipid hydrolases (a mechanism to reduce P demand). These demonstrate that SPX is a negative regulator of both P uptake and P-stress responses. Furthermore, we show that SPX regulation of P uptake and metabolism involves a phosphate starvation response regulator (PHR) as an intermediate. Additionally, we find the SPX related genes exist and operate across the phytoplankton phylogenetic spectrum and in the global oceans, indicating its universal importance in marine phytoplankton. This study lays a foundation for better understanding phytoplankton adaptation to P variability in the future changing oceans.


2021 ◽  
Vol 774 ◽  
pp. 145728
Author(s):  
Guannan Lu ◽  
Haixia Tian ◽  
Amanzhan Nurzhan ◽  
Xiaoyue Gu ◽  
Chaoyang Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Fareeha Anwar ◽  
Uzma Saleem ◽  
Atta-Ur Rehman ◽  
Bashir Ahmad ◽  
Matheus Froeyen ◽  
...  

The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD50. Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.


2021 ◽  
pp. 1-11
Author(s):  
Florian Kühn ◽  
Ruifeng Duan ◽  
Matthias Ilmer ◽  
Ulrich Wirth ◽  
Fatemeh Adiliaghdam ◽  
...  

<b><i>Background:</i></b> Intestinal alkaline phosphatase (IAP) as a tissue-specific isozyme of alkaline phosphatases is predominantly produced by enterocytes in the proximal small intestine. In recent years, an increasing number of pathologies have been identified to be associated with an IAP deficiency, making it very worthwhile to review the various roles, biological functions, and potential therapeutic aspects of IAP. <b><i>Summary:</i></b> IAP primarily originates and acts in the intestinal tract but affects other organs through specific biological axes related to its fundamental roles such as promoting gut barrier function, dephosphorylation/detoxification of lipopolysaccharides (LPS), and regulation of gut microbiota. <b><i>Key Messages:</i></b> Numerous studies reporting on the different roles and the potential therapeutic value of IAP across species have been published during the last decade. While IAP deficiency is linked to varying degrees of physiological dysfunctions across multiple organ systems, the supplementation of IAP has been proven to be beneficial in several translational and clinical studies. The increasing evidence of the salutary functions of IAP underlines the significance of the naturally occurring brush border enzyme.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 497
Author(s):  
Wen-Hao Han ◽  
Chi Zou ◽  
Li-Xin Qian ◽  
Chao Wang ◽  
Xiao-Wei Wang ◽  
...  

Alkaline phosphatases (ALPs: EC 3.1.3.1) are ubiquitous enzymes and play crucial roles in the fundamental phosphate uptake and secretory processes. Although insects are regarded as the most diverse group of organisms, the current understanding of ALP roles in insects is limited. As one type of destructive agricultural pest, whitefly Bemisia tabaci, a phloem feeder and invasive species, can cause extensive crop damage through feeding and transmitting plant diseases. In this study, we retrieved five ALP genes in MEAM1 whitefly, nine ALP genes in MED whitefly via comparative genomics approaches. Compared with nine other insects, whiteflies’ ALP gene family members did not undergo significant expansion during insect evolution, and whiteflies’ ALP genes were dispersed. Moreover, whiteflies’ ALP gene family was conserved among insects and emerged before speciation via phylogenetic analysis. Whiteflies’ ALP gene expression profiles presented that most ALP genes have different expression patterns after feeding on cotton or tobacco plants. Female/male MED whiteflies possessed higher ALP activities on both cotton and tobacco plants irrespective of sex, relative to MEAM1 whiteflies. Meanwhile, adult MED whiteflies possessed higher ALP activity in both whole insect and salivary samples, relative to MEAM1 whiteflies. We also found that both MED and MEAM1 whiteflies could upregulate ALP activities after feeding on cotton compared with feeding on tobacco plants. These findings demonstrated the functions of whiteflies ALPs and will assist the further study of the genomic evolution of insect ALPs.


2021 ◽  
Vol 22 (3) ◽  
pp. 1040
Author(s):  
Atsushi Sato ◽  
Hachidai Aizawa ◽  
Tetsuhiro Tsujino ◽  
Kazushige Isobe ◽  
Taisuke Watanabe ◽  
...  

Polyphosphate (polyP) is released from activated platelets and activates the intrinsic coagulation pathway. However, polyP may also be involved in various pathophysiological functions related to platelets. To clarify these functions, we established a cytochemical method to reproducibly visualize polyP in platelets. Platelets obtained from healthy non-smoking donors were suspended in phosphate-buffered saline and quickly immobilized on glass slides using a Cytospin. After fixation and membrane permeabilization, platelets were treated with 4′,6- diamidino-2-phenylindole (DAPI) and examined using a fluorescence microscope with a blue-violet excitation filter block (BV-2A). Fixed platelets were also subjected to immunocytochemical examination to visualize serotonin distribution. Under the optimized conditions for polyP visualization, immobilized platelets were fixed with 10% neutral-buffered formalin for 4 h or longer and treated with DAPI at a concentration of 10 µg/mL in 0.02% saponin- or 0.1% Tween-20-containing Hanks balanced salt solution as a permeabilization buffer for 30 min at room temperature (22–25 °C). Based on the results obtained by using activated platelets, treatment with alkaline phosphatases, and serotonin release, the DAPI+ targets were identified as polyP. Therefore, this cytochemical method is useful for determining the amount and distribution of polyP in platelets.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5996
Author(s):  
Maria A. Morosanova ◽  
Tatyana V. Fedorova ◽  
Alexandra S. Polyakova ◽  
Elena I. Morosanova

In the present work crude Agaricus bisporus extract (ABE) has been prepared and characterized by its tyrosinase activity, protein composition and substrate specificity. The presence of mushroom tyrosinase (PPO3) in ABE has been confirmed using two-dimensional electrophoresis, followed by MALDI TOF/TOF MS-based analysis. GH27 alpha-glucosidases, GH47 alpha-mannosidases, GH20 hexosaminidases, and alkaline phosphatases have been also detected in ABE. ABE substrate specificity has been studied using 19 phenolic compounds: polyphenols (catechol, gallic, caffeic, chlorogenic, and ferulic acids, quercetin, rutin, dihydroquercetin, l-dihydroxyphenylalanine, resorcinol, propyl gallate) and monophenols (l-tyrosine, phenol, p-nitrophenol, o-nitrophenol, guaiacol, o-cresol, m-cresol, p-cresol). The comparison of ABE substrate specificity and affinity to the corresponding parameters of purified A. bisporus tyrosinase has revealed no major differences. The conditions for spectrophotometric determination have been chosen and the analytical procedures for determination of 1.4 × 10−4–1.0 × 10−3 M l-tyrosine, 3.1 × 10−6–1.0 × 10−4 M phenol, 5.4 × 10−5–1.0 × 10−3 M catechol, 8.5 × 10−5–1.0 × 10−3 M caffeic acid, 1.5 × 10−4–7.5 × 10−4 M chlorogenic acid, 6.8 × 10−5–1.0 × 10−3 M l-DOPA have been proposed. The procedures have been applied for the determination of l-tyrosine in food supplements, l-DOPA in synthetic serum, and phenol in waste water from the food manufacturing plant. Thus, we have demonstrated the possibility of using ABE as a substitute for tyrosinase in such analytical applications, as food supplements, medical and environmental analysis.


Sign in / Sign up

Export Citation Format

Share Document