Effects of Acute Ethanol Exposure on the Early Inflammatory Response After Excisional Injury

2007 ◽  
Vol 31 (2) ◽  
pp. 317-323 ◽  
Author(s):  
Daniel J. Fitzgerald ◽  
Katherine A. Radek ◽  
Mitchell Chaar ◽  
Douglas E. Faunce ◽  
Luisa A. DiPietro ◽  
...  
2003 ◽  
Vol 27 (7) ◽  
pp. 1199-1206 ◽  
Author(s):  
Douglas E. Faunce ◽  
Jennifer L. Garner ◽  
Julian N. Llanas ◽  
Parag J. Patel ◽  
Meredith S. Gregory ◽  
...  

Pneumologie ◽  
2013 ◽  
Vol 67 (S 01) ◽  
Author(s):  
X Lai ◽  
C Schulz ◽  
F Seifert ◽  
B Dolniak ◽  
O Wolkenhauer ◽  
...  

2007 ◽  
Vol 293 (5) ◽  
pp. F1556-F1563 ◽  
Author(s):  
Frank Y. Ma ◽  
Greg H. Tesch ◽  
Richard A. Flavell ◽  
Roger J. Davis ◽  
David J. Nikolic-Paterson

Activation of the p38 mitogen-activated protein kinase (MAPK) pathway induces inflammation, apoptosis, and fibrosis. However, little is known of the contribution of the upstream kinases, MMK3 and MKK6, to activation of the p38 kinase in the kidney and consequent renal injury. This study investigated the contribution of MKK3 to p38 MAPK activation and renal injury in the obstructed kidney. Groups of eight wild-type (WT) or Mkk3−/− mice underwent unilateral ureteric obstruction (UUO) and were killed 3 or 7 days later. Western blotting showed a marked increase in phospho-p38 (p-p38) MAPK in UUO WT kidney. The same trend of increased p-p38 MAPK was seen in the UUO Mkk3−/− kidney, although the actual level of p-p38 MAPK was significantly reduced compared with WT, and this could not be entirely compensated for by the increase in MKK6 expression in the Mkk3−/− kidney. Apoptosis of tubular and interstitial cells in WT UUO mice was reduced by 50% in Mkk3−/− UUO mice. Furthermore, cultured Mkk3−/− tubular epithelial cells showed resistance to H2O2-induced apoptosis, suggesting a direct role for MKK3-p38 signaling in tubular apoptosis. Upregulation of MCP-1 mRNA levels and macrophage infiltration seen on day 3 in WT UUO mice was significantly reduced in Mkk3−/− mice, but this difference was not evident by day 7. The development of renal fibrosis in Mkk3−/− UUO mice was not different from that seen in WT UUO mice. In conclusion, these studies identify discrete roles for MKK3-p38 signaling in renal cell apoptosis and the early inflammatory response in the obstructed kidney.


2008 ◽  
Vol 295 (1) ◽  
pp. H174-H184 ◽  
Author(s):  
Katherine A. Radek ◽  
Elizabeth J. Kovacs ◽  
Richard L. Gallo ◽  
Luisa A. DiPietro

Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1α protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.


Author(s):  
Jaqueline Velkoski ◽  
Franco Grimaldi ◽  
Laura Di Meo ◽  
Francesca Mion ◽  
Riccardo Pravisani ◽  
...  

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Juan Liuzzi ◽  
Lorenzo Menzel ◽  
Changwon Yoo

2016 ◽  
Vol 70 (6) ◽  
pp. 457
Author(s):  
Goran Krdzalic ◽  
Nermin Musanovic ◽  
Alisa Krdzalic ◽  
Indira Mehmedagic ◽  
Amar Kesetovic

Sign in / Sign up

Export Citation Format

Share Document