A Gradient Markov Chain Monte Carlo Algorithm for Computing Multivariate Maximum Likelihood Estimates and Posterior Distributions: Mixture Dose-Response Assessment

Risk Analysis ◽  
2011 ◽  
Vol 32 (2) ◽  
pp. 345-359 ◽  
Author(s):  
Ruochen Li ◽  
James D. Englehardt ◽  
Xiaoguang Li
2021 ◽  
Author(s):  
◽  
Lisa Woods

<p>In this thesis we aim to estimate the unknown phenotype network structure existing among multiple interacting quantitative traits, assuming the genetic architecture is known.  We begin by taking a frequentist approach and implement a score-based greedy hill-climbing search strategy using AICc to estimate an unknown phenotype network structure. This approach was inconsistent and overfitting was common, so we then propose a Bayesian approach that extends on the reversible jump Markov chain Monte Carlo algorithm. Our approach makes use of maximum likelihood estimates in the chain, so we have an efficient sampler using well-tuned proposal distributions. The common approach is to assume uniform priors over all network structures; however, we introduce a prior on the number of edges in the phenotype network structure, which prefers simple models with fewer directed edges. We determine that the relationship between the prior penalty and the joint posterior probability of the true model is not monotonic, there is some interplay between the two.  Simulation studies were carried out and our approach is also applied to a published data set. It is determined that larger trait-to-trait effects are required to recover the phenotype network structure; however, mixing is generally slow, a common occurrence with reversible jump Markov chain Monte Carlo methods. We propose the use of a double step to combine two steps that alter the phenotype network structure. This proposes larger steps than the traditional birth and death move types, possibly changing the dimension of the model by more than one. This double step helped the sampler move between different phenotype network structures in simulated data sets.</p>


2021 ◽  
Author(s):  
◽  
Lisa Woods

<p>In this thesis we aim to estimate the unknown phenotype network structure existing among multiple interacting quantitative traits, assuming the genetic architecture is known.  We begin by taking a frequentist approach and implement a score-based greedy hill-climbing search strategy using AICc to estimate an unknown phenotype network structure. This approach was inconsistent and overfitting was common, so we then propose a Bayesian approach that extends on the reversible jump Markov chain Monte Carlo algorithm. Our approach makes use of maximum likelihood estimates in the chain, so we have an efficient sampler using well-tuned proposal distributions. The common approach is to assume uniform priors over all network structures; however, we introduce a prior on the number of edges in the phenotype network structure, which prefers simple models with fewer directed edges. We determine that the relationship between the prior penalty and the joint posterior probability of the true model is not monotonic, there is some interplay between the two.  Simulation studies were carried out and our approach is also applied to a published data set. It is determined that larger trait-to-trait effects are required to recover the phenotype network structure; however, mixing is generally slow, a common occurrence with reversible jump Markov chain Monte Carlo methods. We propose the use of a double step to combine two steps that alter the phenotype network structure. This proposes larger steps than the traditional birth and death move types, possibly changing the dimension of the model by more than one. This double step helped the sampler move between different phenotype network structures in simulated data sets.</p>


Stat ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 304-319 ◽  
Author(s):  
Alexey Miroshnikov ◽  
Zheng Wei ◽  
Erin Marie Conlon

2017 ◽  
Vol 14 (18) ◽  
pp. 4295-4314 ◽  
Author(s):  
Dan Lu ◽  
Daniel Ricciuto ◽  
Anthony Walker ◽  
Cosmin Safta ◽  
William Munger

Abstract. Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.


2016 ◽  
Vol 9 (9) ◽  
pp. 3213-3229 ◽  
Author(s):  
Mark F. Lunt ◽  
Matt Rigby ◽  
Anita L. Ganesan ◽  
Alistair J. Manning

Abstract. Atmospheric trace gas inversions often attempt to attribute fluxes to a high-dimensional grid using observations. To make this problem computationally feasible, and to reduce the degree of under-determination, some form of dimension reduction is usually performed. Here, we present an objective method for reducing the spatial dimension of the parameter space in atmospheric trace gas inversions. In addition to solving for a set of unknowns that govern emissions of a trace gas, we set out a framework that considers the number of unknowns to itself be an unknown. We rely on the well-established reversible-jump Markov chain Monte Carlo algorithm to use the data to determine the dimension of the parameter space. This framework provides a single-step process that solves for both the resolution of the inversion grid, as well as the magnitude of fluxes from this grid. Therefore, the uncertainty that surrounds the choice of aggregation is accounted for in the posterior parameter distribution. The posterior distribution of this transdimensional Markov chain provides a naturally smoothed solution, formed from an ensemble of coarser partitions of the spatial domain. We describe the form of the reversible-jump algorithm and how it may be applied to trace gas inversions. We build the system into a hierarchical Bayesian framework in which other unknown factors, such as the magnitude of the model uncertainty, can also be explored. A pseudo-data example is used to show the usefulness of this approach when compared to a subjectively chosen partitioning of a spatial domain. An inversion using real data is also shown to illustrate the scales at which the data allow for methane emissions over north-west Europe to be resolved.


Sign in / Sign up

Export Citation Format

Share Document