Atrial Fibrillation Originating From Superior Vena Cava Mimics Typical Atrial Flutter

2011 ◽  
Vol 22 (12) ◽  
pp. 1398-1398 ◽  
Author(s):  
HUNG-YU CHANG ◽  
SHIH-LIN CHANG ◽  
AN-NING FENG ◽  
SHIH-ANN CHEN
2010 ◽  
Vol 34 (2) ◽  
pp. 163-170 ◽  
Author(s):  
GANG CHEN ◽  
JIAN ZENG DONG ◽  
XING PENG LIU ◽  
XIN YONG ZHANG ◽  
DE YONG LONG ◽  
...  

2017 ◽  
Vol 40 (7) ◽  
pp. 754-761
Author(s):  
Hung-Kai Huang ◽  
Shih-Lin Chang ◽  
Yenn-Jiang Lin ◽  
Li-Wei Lo ◽  
Yu-Feng Hu ◽  
...  

2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
I Marco Clement ◽  
R Eiros ◽  
R Dalmau ◽  
T Lopez ◽  
G Guzman ◽  
...  

Abstract Introduction The diagnosis of sinus venosus atrial septal defect (SVASD) is complex and requires special imaging. Surgery is the conventional treatment; however, transcatheter repair may become an attractive option. Case report A 60 year-old woman was admitted to the cardiology department with several episodes of paroxysmal atrial flutter, atrial fibrillation and atrioventricular nodal reentrant tachycardia. She reported a 10-year history of occasional palpitations which had not been studied. A transthoracic echocardiography revealed severe right ventricle dilatation and moderate dysfunction. Right volume overload appeared to be secondary to a superior SVASD with partial anomalous pulmonary venous drainage. A transesophageal echocardiography confirmed the diagnosis revealing a large SVASD of 16x12 mm (Figure A) with left-right shunt (Qp/Qs 2,2) and two right pulmonary veins draining into the right superior vena cava. Additionally, it demonstrated coronary sinus dilatation secondary to persistent left superior vena cava. CMR and cardiac CT showed right superior and middle pulmonary veins draining into the right superior vena cava 18 mm above the septal defect (Figures B and C). After discussion in clinical session, a percutaneous approach was planned to correct the septal defect and anomalous pulmonary drainage. For this purpose, anatomical data obtained from CMR and CT was needed to plan the procedure. During the intervention two stents graft were deployed in the right superior vena cava. The distal stent was flared at the septal defect level so as to occlude it while redirecting the anomalous pulmonary venous flow to the left atrium (Figure D). Control CT confirmed the complete occlusion of the SVASD without residual communication from pulmonary veins to the right superior vena cava or the right atrium (Figure E). Anomalous right superior and middle pulmonary veins drained into the left atrium below the stents. Transthoracic echocardiographies showed progressive reduction of right atrium and ventricle dilatation. The patient also underwent successful ablation of atrial flutter and intranodal tachycardia. She is currently asymptomatic, without dyspnea or arrhythmic recurrences. Conclusions In this case, multimodality imaging played a key role in every stage of the clinical process. First, it provided the diagnosis and enabled an accurate understanding of the patient’s anatomy, particularly of the anomalous pulmonary venous connections. Secondly, it allowed a transcatheter approach by supplying essential information to guide the procedure. Finally, it assessed the effectiveness of the intervention and the improvement in cardiac hemodynamics during follow-up. Abstract P649 Figure.


2013 ◽  
Vol 25 (1) ◽  
pp. 16-22 ◽  
Author(s):  
KOTARO FUKUMOTO ◽  
SEIJI TAKATSUKI ◽  
TAKEHIRO KIMURA ◽  
NOBUHIRO NISHIYAMA ◽  
KOJIRO TANIMOTO ◽  
...  

2004 ◽  
Vol 286 (6) ◽  
pp. H2072-H2077 ◽  
Author(s):  
Angela M. Park ◽  
Chung-Chuan Chou ◽  
Paul C. Drury ◽  
Yuji Okuyama ◽  
Anish Peter ◽  
...  

The thoracic vein hypothesis of chronic atrial fibrillation (AF) posits that rapid, repetitive activations from muscle sleeves within thoracic veins underlie the mechanism of sustained AF. If this is so, thoracic vein ablation should terminate sustained AF and prevent its reinduction. Six female mongrel dogs underwent chronic pulmonary vein (PV) pacing at 20 Hz to induce sustained (>48 h) AF. Bipolar electrodes were used to record from the atria and thoracic veins, including the vein of Marshall, four PVs, and the superior vena cava. Radio frequency (RF) application was applied around the PVs and superior vena cava and along the vein of Marshall until electrical activity was eliminated. Computerized mapping (1,792 electrodes, 1 mm resolution) was also performed. Sustained AF was induced in 30.6 ± 6.5 days, and ablation was done 17.3 ± 8.5 days afterward. Before ablation, the PVs had shorter activation cycle lengths than the atria, and rapid, repetitive activations were observed in the PVs. All dogs converted to sinus rhythm during ( n = 4 dogs) or within 90 min of completion of RF ablation. Rapid atrial pacing afterward induced only nonsustained (<60 s) AF in all dogs. Average AF cycle lengths after reinduction were significantly ( P = 0.01) longer (183 ± 31.5 ms) than baseline (106 ± 16.2 ms). There were no activation cycle length gradients after RF application. We conclude that thoracic vein ablation converts canine sustained AF into sinus rhythm and prevents the reinduction of sustained AF. These findings suggest that thoracic veins are important in the maintenance of AF in dogs.


Sign in / Sign up

Export Citation Format

Share Document