scholarly journals A PHYLOGENETIC PERSPECTIVE ON THE EVOLUTION OF SEXUAL DICHROMATISM IN TANAGERS (THRAUPIDAE): THE ROLE OF FEMALE VERSUS MALE PLUMAGE

Evolution ◽  
1998 ◽  
Vol 52 (4) ◽  
pp. 1219-1224 ◽  
Author(s):  
Kevin J. Burns
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Veronika Gvoždíková Javůrková ◽  
Erik D. Enbody ◽  
Jakub Kreisinger ◽  
Kryštof Chmel ◽  
Jakub Mrázek ◽  
...  

Abstract Birds present a stunning diversity of plumage colors that have long fascinated evolutionary ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number of physiological processes, including microbial resistance. At present, the degree to which differences between pigment-based vs. structural plumage coloration may affect the feather microbiota remains unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We found that microbial load tended to be lower and feather microbial diversity was significantly higher in the plumage of black iridescent males, compared to black matte females and brown individuals. Moreover, black iridescent males had distinct feather microbial communities compared to black matte females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male feathers or different investment in preening influence feather microbiota community composition and load. This study is the first to point to structural plumage coloration as a factor that may significantly regulate feather microbiota. Future work might explore fitness consequences and the role of microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.


2020 ◽  
Vol 16 (1) ◽  
pp. 20190568
Author(s):  
Kate L. Durrant ◽  
Tom Reader ◽  
Matthew R. E. Symonds

Passerine birds produce costly traits under intense sexual selection, including elaborate sexually dichromatic plumage and sperm morphologies, to compete for fertilizations. Plumage and sperm traits vary markedly among species, but it is unknown if this reflects a trade-off between pre- and post-copulatory investment under strong sexual selection producing negative trait covariance, or variation in the strength of sexual selection among species producing positive covariance. Using phylogenetic regression, we analysed datasets describing plumage and sperm morphological traits for 278 passerine species. We found a significant positive relationship between sperm midpiece length and male plumage elaboration and sexual dichromatism. We did not find a relationship between plumage elaboration and testes mass. Our results do not support a trade-off between plumage and sperm traits, but may be indicative of variance among species in the strength of sexual selection to produce both brightly coloured plumage and costly sperm traits.


Author(s):  
Marie-Andrée Giroux ◽  
Delphine Ditlecadet ◽  
Luc J Martin ◽  
Richard B. Lanctot ◽  
Nicolas Lecomte

Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope is a textbook example of a sex-role-reversed species. It is generally agreed that males are responsible for all incubation and parental care duties, whereas females typically desert males after having completed a clutch and may pair with new males to lay additional clutches. Breeding plumage of female red phalaropes is usually more brightly colored than male plumage, a reversed sexual dichromatism usually associated with sex-role reversal. Here, we confirm with PCR-based sexing that male red phalaropes can exhibit both the red body plumage typical of a female and the incubation behaviour typical of a male in this sex-role-reversed species. Our result, combined with previous observations of brightly coloured red phalaropes incubating nests at the same arctic location (Igloolik Island, Nunavut, Canada), suggests that plumage dichromatism alone may not be sufficient to distinguish males from females in this breeding population of red phalaropes. This stresses the need for more systematic genetic sexing combined with standardized description of intersexual differences in red phalarope plumages. Determining whether such female-like plumage on males is a result of phenotypic plasticity or genetic variation could contribute to further understanding sex-role reversal strategies in the short Arctic summer.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1989 ◽  
Author(s):  
Marie-Andrée Giroux ◽  
Delphine Ditlecadet ◽  
Luc J. Martin ◽  
Richard B. Lanctot ◽  
Nicolas Lecomte

Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope (Phalaropus fulicarius) is a textbook example of a sex-role-reversed species. It is generally agreed that males are responsible for all incubation and parental care duties, whereas females typically desert males after having completed a clutch and may pair with new males to lay additional clutches. The breeding plumage of female red phalaropes is usually more brightly colored than male plumage, a reversed sexual dichromatism usually associated with sex-role reversal. Here, we confirm with PCR-based sexing that male red phalaropes can exhibit both the red body plumage typical of a female and the incubation behavior typical of a male. Our result, combined with previous observations of brightly colored red phalaropes incubating nests at the same arctic location (Igloolik Island, Nunavut, Canada), suggests that plumage dichromatism alone may not be sufficient to distinguish males from females in this breeding population of red phalaropes. This stresses the need for more systematic genetic sexing combined with standardized description of intersexual differences in red phalarope plumages. Determining whether such female-like plumage on males is a result of phenotypic plasticity or genetic variation could contribute to further understanding sex-role reversal strategies in the short Arctic summer.


2019 ◽  
Author(s):  
Mark S. Greener ◽  
Emily Hutton ◽  
Christopher J. Pollock ◽  
Annabeth Wilson ◽  
Chun Yin Lam ◽  
...  

ABSTRACTRecent reviews on sexual dichromatism in frogs included Mannophryne trinitatis as the only example they could find of dynamic dichromatism (males turn black when calling) within the family Aromobatidae and found no example of ontogenetic dichromatism in this group. We demonstrate ontogenetic dichromatism in M. trinitatis by rearing post-metamorphic froglets to near maturity: the throats of all individuals started as grey coloured; at around seven weeks, the throat became pale yellow in some, and more strongly yellow as development proceeded; the throats of adults are grey in males and variably bright yellow in females, backed by a dark collar. We demonstrated the degree of throat colour variability by analysing a large sample of females. The red: green (R:G) ratio ranged from ~1.1 to 1.4, reflecting variation from yellow to yellow/orange, and there was also variation in the tone and width of the dark collar, and in the extent to which the yellow colouration occurred posterior to the collar. Female M. trinitatis are known to be territorial in behaviour. We show a positive relationship between throat colour (R:G ratio) and escape performance, as a proxy for quality. Our field observations on Tobago’s M. olmonae showed variability in female throat colour and confirmed that males in this species also turn black when calling. Our literature review of the 20 Mannophryne species so far named showed that all females have yellow throats with dark collars, and that male colour change to black when calling has been reported in eight species; in the remaining 12 species, descriptions of males calling are usually lacking so far. We predict that both dynamic and ontogenetic sexual dichromatism are universal in this genus and provide discussion of the ecological role of dichromatism in this genus of predominantly diurnal, non-toxic frogs, with strong paternal care of offspring.


2016 ◽  
Author(s):  
Marie-Andrée Giroux ◽  
Delphine Ditlecadet ◽  
Luc J Martin ◽  
Richard B. Lanctot ◽  
Nicolas Lecomte

Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope is a textbook example of a sex-role-reversed species. It is generally agreed that males are responsible for all incubation and parental care duties, whereas females typically desert males after having completed a clutch and may pair with new males to lay additional clutches. Breeding plumage of female red phalaropes is usually more brightly colored than male plumage, a reversed sexual dichromatism usually associated with sex-role reversal. Here, we confirm with PCR-based sexing that male red phalaropes can exhibit both the red body plumage typical of a female and the incubation behaviour typical of a male in this sex-role-reversed species. Our result, combined with previous observations of brightly coloured red phalaropes incubating nests at the same arctic location (Igloolik Island, Nunavut, Canada), suggests that plumage dichromatism alone may not be sufficient to distinguish males from females in this breeding population of red phalaropes. This stresses the need for more systematic genetic sexing combined with standardized description of intersexual differences in red phalarope plumages. Determining whether such female-like plumage on males is a result of phenotypic plasticity or genetic variation could contribute to further understanding sex-role reversal strategies in the short Arctic summer.


2022 ◽  
Author(s):  
Zheng Li ◽  
De Chen ◽  
Lu Dong

Sexual dichromatism, the colour difference between males and females, has been particularly important for studying the interplay between sexual and natural selection. However, previous studies on the evolutionary forces of sexual dichromatism examing the Darwin's and Wallace's model have produced mixed results. Phasianidae is a species-rich family with worldwide distribution, occupancy in nearly all terrestrial habitats, and a wide diversity of plumage patterns and colourations. Here, we use phylogenetic comparative methods to test the relationship between sexual dichromatism and colour complexity of males and females on both evolutionary direction and tempo including all species in Phasianidae. We show that the evolutionary direction of sexual dichromatism is negatively correlated with colour complexity in females but not males, and the evolutionary rates of sexual dichromatism are positively correlated with the evolutionary rates of colour complexity in both sexes. These results highlight the important role of female colour evolution in shaping sexual dichromatism in the pheasant family, and provide strong empirical supports for Wallace's hypothesis via a mosaic of sexual and natural selection in both sexes.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document