sex role reversal
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 2)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Nolwenn Fresneau ◽  
Ya-Fu Lee ◽  
Wen-Chen Lee ◽  
András Kosztolányi ◽  
Tamás Székely ◽  
...  

In a few species, males invest more than females in parental care while the females invest in mating competition and producing multiple broods for several mates. Species in the family Jacanidae are commonly used for studying this type of breeding system (called sex-role reversal), and previous studies found discrepancies and variation between species in the expected characteristics of reversed sex roles. Yet, a better understanding of sex role differences in breeding behavior in such species is crucial for disentangling possible evolutionary mechanisms leading to this peculiar breeding system. Sex-role reversal in the pheasant-tailed jacana Hydrophasianus chirurgus has been documented long time ago. Since the very early observation of this species, however, there was no attempt to provide a comprehensive and quantitative description of their breeding. This study aims to fill these knowledge gaps by investigating the sex role differences in the breeding behavior of pheasant-tailed jacanas, by observing and monitoring a breeding population in Taiwan. We focused on three main characteristics of sex-role reversal: (1) competition between females for access to males, such as agonistic and courtship behaviors, (2) polyandrous mating, and (3) male-only care. As expected, we found that females provide most of the territory defense toward conspecifics. Males also participated in agonistic behaviors, although less frequently than females. Furthermore, contrary to what was expected, we found that males spent more time than females on courtship behavior. Polyandrous females performed mating and laying sequentially with different mates but maintained the pair bonds simultaneously with multiple males. For the first time for the species, we could estimate that the average number of mates per female (i.e., degree of polyandry) was 2.4 and that at least 81.8% of the females in the population were polyandrous. Finally, our observations corroborated that brood care is predominantly provided by males, nevertheless females were also participating to some degree in brood attendance but never in direct care (i.e., brooding). This study highlights that some aspects of polyandrous breeding might deviate from stereotyped view on sex-role reversal, and stress the importance of further within species and comparative studies in order to fully understand the mechanisms leading to sex-role reversal.


2020 ◽  
Vol 60 (3) ◽  
pp. 692-702 ◽  
Author(s):  
Sara E Lipshutz ◽  
Kimberly A Rosvall

Synopsis Females of some species are considered sex-role reversed, meaning that they face stronger competition for mates compared to males. While much attention has been paid to behavioral and morphological patterns associated with sex-role reversal, less is known about its physiological regulation. Here, we evaluate hypotheses relating to the neuroendocrine basis of sex-role reversal. We refute the most widely tested activational hypothesis for sex differences in androgen secretion; sex-role reversed females do not have higher levels of androgens in circulation than males. However, we find some evidence that the effects of androgens may be sex-specific; circulating androgen levels correlate with some competitive phenotypes in sex-role reversed females. We also review evidence that sex-role reversed females have higher tissue-specific sensitivity to androgens than males, at least in some species and tissues. Organizational effects may explain these relationships, considering that early exposure to sex steroids can shape later sensitivity to hormones, often in sex-specific ways. Moving forward, experimental and correlative studies on the ontogeny and expression of sex-role reversal will further clarify the mechanisms that generate sex-specific behaviors and sex roles.


Author(s):  
Yoshitaka Kamimura ◽  
Kazunori Yoshizawa

The Auk ◽  
2017 ◽  
Vol 134 (2) ◽  
pp. 363-376 ◽  
Author(s):  
Misha Blizard ◽  
Stephen Pruett-Jones

2016 ◽  
Vol 283 (1843) ◽  
pp. 20161969 ◽  
Author(s):  
Cornelia Voigt

Sex differences in brain structure and behaviour are well documented among vertebrates. An excellent model exploring the neural mechanisms of sex differences in behaviour is represented by sex-role-reversed species. In the majority of bird species, males compete over access to mates and resources more strongly than do females. It is thought that the responsible brain regions are therefore more developed in males than in females. Because these behaviours and brain regions are activated by androgens, males usually have increased testosterone levels during breeding. Therefore, in species with sex-role reversal, certain areas of the female brain should be more developed or steroid hormone profiles should be sexually reversed. Here, I studied circulating hormone levels and gene expression of steroid hormone receptors and aromatase in a captive population of barred buttonquails ( Turnix suscitator ). While females performed courtship and agonistic behaviours, there was no evidence for sexually reversed hormone profiles. However, I found female-biased sex differences in gene expression of androgen receptors in several hypothalamic and limbic brain regions that were already in place at hatching. Such sex differences are not known from non-sex-role-reversed species. These data suggest that increased neural sensitivity to androgens could be involved in the mechanisms mediating sex-role-reversed behaviours.


2016 ◽  
Vol 26 (18) ◽  
pp. 2522-2526 ◽  
Author(s):  
Karoline Fritzsche ◽  
Isobel Booksmythe ◽  
Göran Arnqvist

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1989 ◽  
Author(s):  
Marie-Andrée Giroux ◽  
Delphine Ditlecadet ◽  
Luc J. Martin ◽  
Richard B. Lanctot ◽  
Nicolas Lecomte

Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope (Phalaropus fulicarius) is a textbook example of a sex-role-reversed species. It is generally agreed that males are responsible for all incubation and parental care duties, whereas females typically desert males after having completed a clutch and may pair with new males to lay additional clutches. The breeding plumage of female red phalaropes is usually more brightly colored than male plumage, a reversed sexual dichromatism usually associated with sex-role reversal. Here, we confirm with PCR-based sexing that male red phalaropes can exhibit both the red body plumage typical of a female and the incubation behavior typical of a male. Our result, combined with previous observations of brightly colored red phalaropes incubating nests at the same arctic location (Igloolik Island, Nunavut, Canada), suggests that plumage dichromatism alone may not be sufficient to distinguish males from females in this breeding population of red phalaropes. This stresses the need for more systematic genetic sexing combined with standardized description of intersexual differences in red phalarope plumages. Determining whether such female-like plumage on males is a result of phenotypic plasticity or genetic variation could contribute to further understanding sex-role reversal strategies in the short Arctic summer.


Author(s):  
Marie-Andrée Giroux ◽  
Delphine Ditlecadet ◽  
Luc J Martin ◽  
Richard B. Lanctot ◽  
Nicolas Lecomte

Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope is a textbook example of a sex-role-reversed species. It is generally agreed that males are responsible for all incubation and parental care duties, whereas females typically desert males after having completed a clutch and may pair with new males to lay additional clutches. Breeding plumage of female red phalaropes is usually more brightly colored than male plumage, a reversed sexual dichromatism usually associated with sex-role reversal. Here, we confirm with PCR-based sexing that male red phalaropes can exhibit both the red body plumage typical of a female and the incubation behaviour typical of a male in this sex-role-reversed species. Our result, combined with previous observations of brightly coloured red phalaropes incubating nests at the same arctic location (Igloolik Island, Nunavut, Canada), suggests that plumage dichromatism alone may not be sufficient to distinguish males from females in this breeding population of red phalaropes. This stresses the need for more systematic genetic sexing combined with standardized description of intersexual differences in red phalarope plumages. Determining whether such female-like plumage on males is a result of phenotypic plasticity or genetic variation could contribute to further understanding sex-role reversal strategies in the short Arctic summer.


Sign in / Sign up

Export Citation Format

Share Document