scholarly journals POPULATIONS OF MONARCH BUTTERFLIES WITH DIFFERENT MIGRATORY BEHAVIORS SHOW DIVERGENCE IN WING MORPHOLOGY

Evolution ◽  
2009 ◽  
Vol 64 (4) ◽  
pp. 1018-1028 ◽  
Author(s):  
Sonia Altizer ◽  
Andrew K. Davis
PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93492 ◽  
Author(s):  
Haley Johnson ◽  
Michelle J. Solensky ◽  
Dara A. Satterfield ◽  
Andrew K. Davis

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Dara A. Satterfield ◽  
Andrew K. Davis

AbstractThe migration of monarch butterflies (Danaus plexippus) in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width), and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010), results showed that the earliest migrants (n = 20) in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17). There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind


2019 ◽  
Vol 33 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Leslie E. Decker ◽  
Abrianna J. Soule ◽  
Jacobus C. de Roode ◽  
Mark D. Hunter

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Author(s):  
Iman Momeni‐Dehaghi ◽  
Joseph R. Bennett ◽  
Greg W. Mitchell ◽  
Trina Rytwinski ◽  
Lenore Fahrig

Sign in / Sign up

Export Citation Format

Share Document