wing morphology
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 70)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Sarah Ruth Marzec ◽  
Katharine Pelletier ◽  
Amy Hui-Pin Chang ◽  
Ian Dworkin

Over 65 years ago, Waddington demonstrated ancestrally phenotypically plastic traits can evolve to become constitutive, a process he termed genetic assimilation. Genetic assimilation evolves rapidly, assumed to be in large part due to segregating genetic variation only expressed in rare/novel environments, but otherwise phenotypically cryptic. Despite previous work suggesting a substantial role of cryptic genetic variation contributing to the evolution of genetic assimilation, some have argued for a prominent role for new mutations of large effect concurrent with selection. Interestingly, Waddington was less concerned by the relative contribution of CGV or new variants, but aimed to test the role of canalization, an evolved form of robustness. While canalization has been extensively studied, its role in the evolution of genetic assimilation is disputed, in part because explicit tests of evolved robustness are lacking. To address these questions, we recreated Waddington's selection experiments on an environmentally sensitive change in Drosophila wing morphology (crossvein development), using many independently evolved replicate lineages. Using these, we show that 1) a polygenic CGV, but not new variants of large effect are largely responsible for the evolved response demonstrated using both genomic and genetic approaches. 2) Using both environmental manipulations and mutagenesis of the evolved lineages that there is no evidence for evolved changes in canalization contributing to genetic assimilation. Finally, we demonstrate that 3) CGV has potentially pleiotropic and fitness consequences in natural populations and may not be entirely cryptic.


2022 ◽  
Author(s):  
Yun‐Long Zou ◽  
Xin Ding ◽  
Li Zhang ◽  
Li‐Feng Xu ◽  
Shu‐Bo Liang ◽  
...  

2021 ◽  
Author(s):  
Pedro Horta ◽  
Helena Raposeira ◽  
Adrián Baños ◽  
Carlos Ibáñez ◽  
Orly Razgour ◽  
...  

Abstract Cryptic species that coexist in sympatry are likely to simultaneously experience strong competition and hybridization. The first phenomenon would lead to character displacement, whereas the second can potentially promote morphological similarity through adaptive introgression. The main goal of this work was to investigate the effect of introgressive hybridization on the morphology of cryptic Iberian Eptesicus bats when facing counteracting evolutionary forces from interspecific competition. We found substantial overlap both in dentition and in wing morphology traits, though mainly in individuals in sympatry. The presence of hybrids contributes to a fifth of this overlap, with hybrids showing traits with intermediate morphometry. Thus, introgressive hybridization may contribute to species adaptation to trophic and ecological space responding directly to the macro-habitats characteristics of the sympatric zone and to local prey availability. On the other hand, fur shade tended to be browner and brighter in hybrids than parental species. Colour differences could result from partitioning of resources as an adaptation to environmental factors such as roost and microhabitats. We argue that a balance between adaptive introgression and niche partitioning shapes species interactions with the environment through affecting morphological traits under selection.


Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pedro A. Aguilar-Rodríguez ◽  
Aline Méndez-Rodríguez ◽  
Sandra M. Ospina-Garcés ◽  
M. Cristina MacSwiney G. ◽  
Yossi Yovel

Abstract We report the first prey species consumed by the free-ranging Van Gelder’s bat Bauerus dubiaquercus. We trapped four pregnant individuals of this species carrying freshly captured dung beetles. We describe the wing morphology and flight descriptors (wing loading and wing aspect ratio) of the species, which presents wings more suitable for capturing insects by aerial hawking, although the evidence suggests that is able to capture dung beetles of nearly 10% of its body mass in flight close to the ground. The species could obtain their prey while foraging on uncluttered pasture near forest edges.


2021 ◽  
Vol 45 (4) ◽  
pp. 463-474
Author(s):  
Mustafa KÖSOĞLU ◽  
Rahşan İVGİN TUNCA ◽  
Neslihan ÖZSOY ◽  
Yahya Tuncay TUNA ◽  
Erkan TOPAL ◽  
...  

2021 ◽  
Vol 18 (185) ◽  
Author(s):  
Brett R. Aiello ◽  
Usama Bin Sikandar ◽  
Hajime Minoguchi ◽  
Burhanuddin Bhinderwala ◽  
Chris A. Hamilton ◽  
...  

Across insects, wing shape and size have undergone dramatic divergence even in closely related sister groups. However, we do not know how morphology changes in tandem with kinematics to support body weight within available power and how the specific force production patterns are linked to differences in behaviour. Hawkmoths and wild silkmoths are diverse sister families with divergent wing morphology. Using three-dimensional kinematics and quasi-steady aerodynamic modelling, we compare the aerodynamics and the contributions of wing shape, size and kinematics in 10 moth species. We find that wing movement also diverges between the clades and underlies two distinct strategies for flight. Hawkmoths use wing kinematics, especially high frequencies, to enhance force and wing morphologies that reduce power. Silkmoths use wing morphology to enhance force, and slow, high-amplitude wingstrokes to reduce power. Both strategies converge on similar aerodynamic power and can support similar body weight ranges. However, inter-clade within-wingstroke force profiles are quite different and linked to the hovering flight of hawkmoths and the bobbing flight of silkmoths. These two moth groups fly more like other, distantly related insects than they do each other, demonstrating the diversity of flapping flight evolution and a rich bioinspired design space for robotic flappers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Micael Reis ◽  
Natalia Siomava ◽  
Ernst A. Wimmer ◽  
Nico Posnien

The ability of powered flight in insects facilitated their great evolutionary success allowing them to occupy various ecological niches. Beyond this primary task, wings are often involved in various premating behaviors, such as the generation of courtship songs and the initiation of mating in flight. These specific functions imply special adaptations of wing morphology, as well as sex-specific wing morphologies. Although wing morphology has been extensively studied in Drosophila melanogaster (Meigen, 1830), a comprehensive understanding of developmental plasticity and the impact of sex on wing size and shape plasticity is missing for other Diptera. Therefore, we raised flies of the three Diptera species Drosophila melanogaster, Ceratitis capitata (Wiedemann, 1824) and Musca domestica (Linnaeus, 1758) at different environmental conditions and applied geometric morphometrics to analyze wing shape. Our data showed extensive interspecific differences in wing shape, as well as a clear sexual wing shape dimorphism in all three species. We revealed an impact of different rearing temperatures on wing shape in all three species, which was mostly explained by plasticity in wing size in D. melanogaster. Rearing densities had significant effects on allometric wing shape in D. melanogaster, while no obvious effects were observed for the other two species. Additionally, we did not find evidence for sex-specific response to different rearing conditions in D. melanogaster and C. capitata, while a male-specific impact of different rearing conditions was observed on non-allometric wing shape in M. domestica. Overall, our data strongly suggests that many aspects of wing morphology underly species-specific adaptations and we discuss potential developmental and functional implications of our results.


Author(s):  
Yaser Saffar Talori ◽  
Jing-Shan Zhao ◽  
Jingmai K O'Connor

This study seeks to better quantify the parameters that drove the evolution of flight from non-volant winged dinosaurs to modern birds. In order to explore this issue, we used fossil data to model the feathered forelimbs of Caudipteryx, the most basal non-volant maniraptoran dinosaur with elongated pennaceous feathers that could be described as forming proto-wings. In order to quantify the limiting flight factors, we created three hypothetical wing profiles for Caudipteryx with incrementally larger wingspans. We compared them with what revealed through fossils in wing morphology. These four models were analyzed under varying air speed, wing beat amplitude, and wing beat frequency to determine lift, thrust potential, and metabolic requirements. We tested these models using theoretical equations in order to mathematically describe the evolutionary changes observed during the evolution of modern birds from a winged terrestrial theropod like Caudipteryx. Caudipteryx could not fly, but this research indicates that with a large enough wing span, Caudipteryx-like animal could have flown. The results of these analyses mathematically confirm that during the evolution of energetically efficient powered flight in derived maniraptorans, body weight had to decrease and wing area/wing profile needed to increase together with the flapping angle and surface area for the attachment of the flight muscles. This study quantifies the morphological changes that we observe in the pennaraptoran fossil record in the overall decrease in body size in paravians, the increased wing surface area in Archaeopteryx relative to Caudipteryx, and changes observed in the morphology of the thoracic girdle, namely, the orientation of the glenoid and the enlargement of the sternum.


2021 ◽  
Author(s):  
Yuno Do ◽  
Woong-Bae Park ◽  
Jun-Kyu Park ◽  
Chang‐Jun Kim ◽  
Moon Bo Choi

Abstract The yellow-legged hornet (Vespa velutina nigrithorax) is an invasive species in South Korea with negative economic, ecological, and public health impacts. We investigated genetic and morphological variation in the species populations on Mt. Jiri, the tallest mountain in South Korea. We hypothesized that a high-altitude would be negatively correlated with the genetic diversity of the hornet population, and hornet wing morphology would change with an increase in altitude. Our results showed that the genetic diversity of yellow-legged hornets did not decrease as altitude increased. Regardless of the altitude, the inbreeding coefficient was high at the newly colonized sites. A single genetic population occurred in the mountainous areas examined and gradually expanded its range. Wing morphology, especially shape, did not change with an increase in altitude or decrease in temperature. Although snow cover and cool temperatures at high altitudes could limit nest-building activities, they did not prevent the extension of the range of the species. Therefore, the yellow-legged hornet cannot be controlled naturally by climate or topography; combined approaches, including chemical control, nest removal, and bait-trapping techniques should be implemented.


Sign in / Sign up

Export Citation Format

Share Document