scholarly journals Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes

2009 ◽  
Vol 68 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Susan Winch ◽  
Heath J. Mills ◽  
Joel E. Kostka ◽  
Danielle Fortin ◽  
David R.S. Lean
Author(s):  
Richard Kevorkian ◽  
Sean Callahan ◽  
Rachel Winstead ◽  
Karen G. Lloyd

AbstractUncultured members of the Methanomicrobia called ANME-1 perform the anaerobic oxidation of methane (AOM) through a process that uses much of the methanogenic pathway. It is unknown whether ANME-1 obligately perform AOM, or whether some of them can perform methanogenesis when methanogenesis is exergonic. Most marine sediments lack advective transport of methane, so AOM occurs in the sulfate methane transition zone (SMTZ) where sulfate-reducing bacteria consume hydrogen produced by fermenters, making hydrogenotrophic methanogenesis exergonic in the reverse direction. When sulfate is depleted deeper in the sediments, hydrogen accumulates making hydrogenotrophic methanogenesis exergonic, and methane accumulates in the methane zone (MZ). In White Oak River estuarine sediments, we found that ANME-1 comprised 99.5% of 16S rRNA genes from amplicons and 100% of 16S rRNA genes from metagenomes of the Methanomicrobia in the SMTZ and 99.9% and 98.3%, respectively, in the MZ. Each of the 16 ANME-1 OTUs (97% similarity) had peaks in the SMTZ that coincided with peaks of putative sulfate-reducing bacteria Desulfatiglans sp. and SEEP-SRB1. In the MZ, ANME-1, but no putative sulfate-reducing bacteria or cultured methanogens, increased with depth. Using publicly available data, we found that ANME-1 was the only group expressing methanogenic genes during both net AOM and net methanogenesis in an enrichment. The commonly-held belief that ANME-1 perform AOM is based on the fact that they dominate natural settings and enrichments where net AOM is measured. We found that ANME-1 also dominate natural settings and enrichment where net methanogenesis is measured, so we conclude that ANME-1 perform methane production. Alternating between AOM and methanogenesis, either in a single ANME-1 cell or between different subclades with similar 16S rRNA sequences of ANME-1, may confer a competitive advantage, explaining the predominance of low-energy adapted ANME-1 in methanogenic sediments worldwide.Abstract ImportanceLife may operate differently at very low energy levels. Natural populations of microbes that make methane survive on some of the lowest energy yields of all life. From all available data, we infer that these microbes alternate between methane production and oxidation, depending on which process is energy-yielding in the environment. This means that much of the methane produced naturally in marine sediments occurs through an organism that is also capable of destroying it under different circumstances.


2003 ◽  
Vol 69 (5) ◽  
pp. 2765-2772 ◽  
Author(s):  
Ashita Dhillon ◽  
Andreas Teske ◽  
Jesse Dillon ◽  
David A. Stahl ◽  
Mitchell L. Sogin

ABSTRACT The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.


1999 ◽  
Vol 65 (3) ◽  
pp. 999-1004 ◽  
Author(s):  
Gerda Harms ◽  
Karsten Zengler ◽  
Ralf Rabus ◽  
Frank Aeckersberg ◽  
Dror Minz ◽  
...  

ABSTRACT Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the δ subclass of the classProteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum andDesulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, ando-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene,m-isoproyltoluene, benzoate, andm-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide.


2017 ◽  
Vol 262 ◽  
pp. 651-655 ◽  
Author(s):  
Xing Yu Liu ◽  
Ming Jiang Zhang ◽  
Yi Bin Li ◽  
Zi Ning Wang ◽  
Jian Kang Wen

To research the remediation efficiency of sulfate reducing bacteria and iron reducing bacteria on heavy metals, the remediation experiments of laboratory-scale and field-scale were conducted respectively with chalcopyrite tailings and 3 hectares lead-zinc sulfides mine tailings. The ion concentration of exudate was determined using inductively coupled plasma atomic emission spectroscopy, and key bacterial strains were investigated by real-time PCR. The laboratory-scale experiment of chalcopyrite tailings indicated pH of exudate rose to neutral, penetration time of exudate significantly increased, redox potential and dissolved iron notably decreased, and black metal sulfides were formed during remediation by sulfate reducing bacteria and iron reducing bacteria. The field-scale lead-zinc sulfides mine tailings remediation results indicated that the concentration of dissolved heavy metals in exudate decreased, and the growth of both moss and plants were promoted.


1999 ◽  
Vol 65 (4) ◽  
pp. 1548-1555 ◽  
Author(s):  
Bruce Wielinga ◽  
Juliette K. Lucy ◽  
Johnnie N. Moore ◽  
October F. Seastone ◽  
James E. Gannon

ABSTRACT The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.


Sign in / Sign up

Export Citation Format

Share Document