scholarly journals Outer membrane permeability and porin proteins of Yersinia enterocolitica

1990 ◽  
Vol 70 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Katarzyna Brzostek ◽  
Wright W. Nichols
2015 ◽  
Vol 60 (3) ◽  
pp. 1349-1359 ◽  
Author(s):  
Jean-Marie Pagès ◽  
Sabine Peslier ◽  
Thomas A. Keating ◽  
Jean-Philippe Lavigne ◽  
Wright W. Nichols

This study examined the activity of the novel antimicrobial combination ceftazidime-avibactam againstEnterobacteriaceaeexhibiting different outer membrane permeability profiles, specifically with or without porins and with or without expression of the main efflux pump (AcrAB-TolC). The addition of the outer membrane permeabilizer polymyxin B nonapeptide increased the antibacterial activities of avibactam alone, ceftazidime alone, and ceftazidime-avibactam against the characterized clinical isolates ofEscherichia coli,Enterobacter aerogenes, andKlebsiella pneumoniae. This enhancement of activities was mainly due to increased passive penetration of compounds since inhibition of efflux by the addition of phenylalanine-arginine β-naphthylamide affected the MICs minimally. OmpF (OmpK35) or OmpC (OmpK36) pores were not the major route by which avibactam crossed the outer membranes ofE. coliandK. pneumoniae. In contrast, Omp35 and Omp36 allowed diffusion of avibactam across the outer membrane ofE. aerogenes, although other diffusion channels for avibactam were also present in that species. It was clear that outer membrane permeability and outer membrane pore-forming proteins play a key role in the activity of ceftazidime-avibactam. Nevertheless, the MICs of ceftazidime-avibactam (with 4 mg/liter avibactam) against the ceftazidime-resistant clinical isolates of the three species ofEnterobacteriaceaestudied were ≤8 mg/liter, regardless of outer membrane permeability changes resulting from an absence of defined porin proteins or upregulation of efflux.


2003 ◽  
Vol 71 (4) ◽  
pp. 2014-2021 ◽  
Author(s):  
J. A. Bengoechea ◽  
K. Brandenburg ◽  
M. D. Arraiza ◽  
U. Seydel ◽  
M. Skurnik ◽  
...  

ABSTRACT Pathogenic biotypes of Yersinia enterocolitica (serotypes O:3, O:8, O:9, and O:13), but not environmental biotypes (serotypes O:5, O:6, O:7,8, and O:7,8,13,19), increased their permeability to hydrophobic probes when they were grown at pH 5.5 or in EGTA-supplemented (Ca2+-restricted) media at 37°C. A similar observation was also made when representative strains of serotypes O:8 and O:5 were tested after brief contact with human monocytes. The increase in permeability was independent of the virulence plasmid. The role of lipopolysaccharide (LPS) in this phenomenon was examined by using Y. enterocolitica serotype O:8. LPS aggregates of bacteria grown in acidic or EGTA-supplemented broth took up more N-phenylnaphthylamine than LPS aggregates of bacteria grown in standard broth and also showed a marked increase in acyl chain fluidity which correlated with permeability, as determined by measurements obtained in the presence of hydrophobic dyes. No significant changes in O-antigen polymerization were observed, but lipid A acylation changed depending on the growth conditions. In standard medium at 37°C, there were hexa-, penta-, and tetraacyl lipid A forms, and the pentaacyl form was dominant. The amount of tetraacyl lipid A increased in EGTA-supplemented and acidic media, and hexaacyl lipid A almost disappeared under the latter conditions. Our results suggest that pathogenic Y. enterocolitica strains modulate lipid A acylation coordinately with expression of virulence proteins, thus reducing LPS packing and increasing outer membrane permeability. The changes in permeability, LPS acyl chain fluidity, and lipid A acylation in pathogenic Y. enterocolitica strains approximate the characteristics in Yersinia pseudotuberculosis and Yersinia pestis and suggest that there is a common outer membrane pattern associated with pathogenicity.


2004 ◽  
Vol 48 (6) ◽  
pp. 2153-2158 ◽  
Author(s):  
Charléric Bornet ◽  
Nathalie Saint ◽  
Lilia Fetnaci ◽  
Myrielle Dupont ◽  
Anne Davin-Régli ◽  
...  

ABSTRACT In Enterobacter aerogenes, β-lactam resistance often involves a decrease in outer membrane permeability induced by modifications of porin synthesis. In ATCC 15038 strain, we observed a different pattern of porin production associated with a variable antibiotic susceptibility. We purified Omp35, which is expressed under conditions of low osmolality and analyzed its pore-forming properties in artificial membranes. This porin was found to be an OmpF-like protein with high conductance values. It showed a noticeably higher conductance compared to Omp36 and a specific location of WNYT residues in the L3 loop. The importance of the constriction region in the porin function suggests that this organization is involved in the level of susceptibility to negative large cephalosporins such as ceftriaxone by bacteria producing the Omp35 porin subfamily.


1998 ◽  
Vol 36 (1) ◽  
pp. 266-268 ◽  
Author(s):  
L. S. Tzouvelekis ◽  
E. Tzelepi ◽  
E. Prinarakis ◽  
M. Gazouli ◽  
A. Katrahoura ◽  
...  

The sporadic emergence of Klebsiella pneumoniae strains resistant to cefepime and cefpirome was observed in Greek hospitals during 1996. Examination of six epidemiologically distinct strains and clones selected in vitro provided indications that resistance is due to the cooperation of decreased outer membrane permeability and hydrolysis of the cephalosporins by SHV-5 β-lactamase, which was produced in large amounts.


Sign in / Sign up

Export Citation Format

Share Document