outer membrane permeability
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 40)

H-INDEX

47
(FIVE YEARS 5)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 346
Author(s):  
Elshaymaa I. Elmongy ◽  
Walaa A. Negm ◽  
Engy Elekhnawy ◽  
Thanaa A. El-Masry ◽  
Nashwah G. M. Attallah ◽  
...  

Monterey cypress (Cupressus macrocarpa) is a decorative plant; however, it possesses various pharmacological activities. Therefore, we explored the phytochemical profile of C. macrocarpa root methanol extract (CRME) for the first time. Moreover, we investigated its antidiarrheal (in vivo), antibacterial, and antibiofilm (in vitro) activities against Salmonella enterica clinical isolates. The LC-ESI-MS/MS analysis of CRME detected the presence of 39 compounds, besides isolation of 2,3,2″,3″-tetrahydro-4′-O-methyl amentoflavone, amentoflavone, and dihydrokaempferol-3-O-α-l-rhamnoside for the first time. Dihydrokaempferol-3-O-α-l-rhamnoside presented the highest antimicrobial activity and the range of values of MICs against S. enterica isolates was from 64 to 256 µg/mL. The antidiarrheal activity of CRME was investigated by induction of diarrhea using castor oil, and exhibited a significant reduction in diarrhea and defecation frequency at all doses, enteropooling (at 400 mg/kg), and gastrointestinal motility (at 200, 400 mg/kg) in mice. The antidiarrheal index of CRME increased in a dose-dependent manner. The effect of CRME on various membrane characters of S. enterica was studied after typing the isolates by ERIC-PCR. Its impact on efflux and its antibiofilm activity were inspected. The biofilm morphology was observed using light and scanning electron microscopes. The effect on efflux activity and biofilm formation was further elucidated using qRT-PCR. A significant increase in inner and outer membrane permeability and a significant decrease in integrity and depolarization (using flow cytometry) were detected with variable percentages. Furthermore, a significant reduction in efflux and biofilm formation was observed. Therefore, CRME could be a promising source for treatment of gastrointestinal tract diseases.


Author(s):  
Deep Patel ◽  
Deepa Patel ◽  
Dipali Talele

Nanoliposomes were prepared using solvent injection method and topical spray using simple dispersion method. The particle size and % Entrapment Efficiency were found 18.01 ± 0.21 nm and 87.71 ± 0.12% respectively. TEM studies showed that the particles were in spherical shape. Drying time, volume per spray, area of film and dose uniformity were found to be 280 ± 0.002 sec, 0.16± 0.021 ml, 155.57 ± 0.012 cm2 and 0.15± 0.0012 ml respectively which showed good spraying conditions on the affected area. Stability study shows that dapsone and chaulmoogra oil loaded nanoliposomal topical spray was stable at accelerated condition up to 1 month. The present investigation provides a safe approach by improving the outer membrane permeability to combat microbial drug resistance and increasing safety in leprosy treatment. 


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1432
Author(s):  
Sandra Sakalauskaite ◽  
Deimante Vasiliauske ◽  
Emilija Demikyte ◽  
Rimantas Daugelavicius ◽  
Martynas Lelis

The beneficial photocatalytic properties of UV light activated TiO2 powder are well-known and have been demonstrated with various pollutants and pathogens. However, traditionally observed photocatalytic activity of visible light activated pristine TiO2 is insignificant but there are a few studies which have reported that under some specific conditions commercially available TiO2 powder could at least partially disinfect microorganisms even under visible light. To better understand this phenomenon, in the current study we focused on bacteria response to the treatment by visible light and P25 TiO2 powder. More specifically, we analyzed the relationship between the bacteria viability, outer membrane permeability, metabolism, and its capacity to generate intracellular reactive oxygen species. During the study we assayed the viability of treated bacteria by the spread plate technique and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction method. Changes in bacterial outer membrane permeability were determined by measuring the fluorescence of N-phenyl-1-naphthylamine (NPN). To detect intracellular reactive oxygen species formation, the fluorescence of dichlorodihydrofluorescein diacetate (DCFH-DA) was assayed. Results of our study indicated that TiO2 and wide spectrum visible light irradiation damaged the integrity of the outer membrane and caused oxidative stress in the metabolizing bacteria. When favorable conditions were created, these effects added up and unexpectedly high bacterial inactivation was achieved.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1318
Author(s):  
Snehal Palwe ◽  
Yamuna Devi Bakthavatchalam ◽  
Kshama Khobragadea ◽  
Arun S. Kharat ◽  
Kamini Walia ◽  
...  

Ceftazidime/avibactam uniquely demonstrates activity against both KPC and OXA-48-like carbapenemase-expressing Enterobacterales. Clinical resistance to ceftazidime/avibactam in KPC-producers was foreseen in in-vitro resistance studies. Herein, we assessed the resistance selection propensity of ceftazidime/avibactam in K. pneumoniae expressing OXA-48-like β-lactamases (n = 10), employing serial transfer approach. Ceftazidime/avibactam MICs (0.25–4 mg/L) increased to 16–256 mg/L after 15 daily-sequential transfers. The whole genome sequence analysis of terminal mutants showed modifications in proteins linked to efflux (AcrB/AcrD/EmrA/Mdt), outer membrane permeability (OmpK36) and/or stress response pathways (CpxA/EnvZ/RpoE). In-vitro growth properties of all the ceftazidime/avibactam-selected mutants were comparable to their respective parents and they retained the ability to cause pulmonary infection in neutropenic mice. Against these mutants, we explored the activities of various combinations of β-lactams (ceftazidime or cefepime) with structurally diverse β-lactamase inhibitors or a β-lactam enhancer, zidebactam. Zidebactam, in combination with either cefepime or ceftazidime, overcame ceftazidime/avibactam resistance (MIC range 0.5–8 mg/L), while cefepime/avibactam was the second best (MIC: 0.5–16 mg/L) in yielding lower MICs. The present work revealed the possibility of ceftazidime/avibactam resistance in OXA-48-like K. pneumoniae through mutations in proteins involved in efflux and/or porins without concomitant fitness cost mandating astute monitoring of ceftazidime/avibactam resistance among OXA-48 genotypes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Cheng-Jung Ho ◽  
Huey-Jiun Ko ◽  
Tzu-Shao Liao ◽  
Xiang-Ren Zheng ◽  
Po-Hsu Chou ◽  
...  

AbstractApoptosis induced by doxorubicin, bortezomib, or paclitaxel, targeting DNA, 26S proteasome, and microtubules respectively, was assessed in two osteosarcoma cells, p53 wild-type U2OS and p53-null MG63 cells. Doxorubicin-induced apoptosis only occurred in U2OS, not in MG63. In contrast, bortezomib and paclitaxel could drive U2OS or MG63 toward apoptosis effectively, suggesting that apoptosis induced by bortezomib or paclitaxel is p53-independent. The expressions of Bcl2 family members such as Bcl2, Bcl-xl, and Puma could be seen in U2OS and MG63 cells with or without doxorubicin, bortezomib, or paclitaxel treatment. In contrast, another member, Bim, only could be observed in U2OS, not in MG63, under the same conditions. Bim knockdown did not affect the doxorubicin-induced apoptosis in U2OS, suggested that a BH3-only protein other than Bim might participate in apoptosis induced by doxorubicin. Using a BH3-mimetic, ABT-263, to inhibit Bcl2 or Bcl-xl produced a limited apoptotic response in U2OS and MG63 cells, suggesting that this BH3-mimetic cannot activate the Bax/Bak pathway efficiently. Significantly, ABT-263 enhanced doxorubicin- and bortezomib-induced apoptosis synergistically in U2OS and MG63 cells. These results implied that the severe cellular stress caused by doxorubicin or bortezomib might be mediated through a dual process to control apoptosis. Respectively, doxorubicin or bortezomib activates a BH3-only protein in one way and corresponding unknown factors in another way to affect mitochondrial outer membrane permeability, resulting in apoptosis. The combination of doxorubicin with ABT-263 could produce synergistic apoptosis in MG63 cells, which lack p53, suggesting that p53 has no role in doxorubicin-induced apoptosis in osteosarcoma. In addition, ABT-263 enhanced paclitaxel to induce moderate levels of apoptosis.


2021 ◽  
Vol 14 (8) ◽  
pp. 756
Author(s):  
Walaa A. Negm ◽  
Mona El-Aasr ◽  
Amal Abo Kamer ◽  
Engy Elekhnawy

The vast spread of multidrug-resistant bacteria has encouraged researchers to explore new antimicrobial compounds. This study aimed to investigate the phytochemistry and antibacterial activity of Cycas thouarsii R.Br. leaves extract against Klebsiella pneumoniae clinical isolates. The minimum inhibitory concentration (MIC) values of C. thouarsii extract ranged from 4 to 32 µg/mL. The impact of the treatment of the isolates with sub-inhibitory concentrations of C. thouarsii extract was investigated on the bacterial growth, membrane integrity, inner and outer membrane permeability, membrane depolarization, and bacterial morphology using a scanning electron microscope (SEM) and on the efflux activity using qRT-PCR. Interestingly, most K. pneumoniae isolates treated with C. thouarsii extract showed growth inhibition—a decrease in membrane integrity. In addition, we observed various morphological changes, a significant increase in inner and outer membrane permeability, a non-significant change in membrane depolarization, and a decrease in efflux activity after treatment. The phytochemical investigation of C. thouarsii extract revealed the isolation of one new biflavonoid, 5,7,7”,4”’-tetra-O-methyl-hinokiflavone (3), and five known compounds, stigmasterol (1), naringenin (2), 2,3-dihydrobilobetin (4), 4’,4’’’-O-dimethyl amentoflavone (5), and hinokiflavone (6), for the first time. Moreover, the pure compounds’ MICs’ ranged from 0.25 to 2 µg/mL. Thus, C. thouarsii could be a potential source for new antimicrobials.


2021 ◽  
Vol 118 (31) ◽  
pp. e2107644118
Author(s):  
Johanna Ude ◽  
Vishwachi Tripathi ◽  
Julien M. Buyck ◽  
Sandra Söderholm ◽  
Olivier Cunrath ◽  
...  

Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, Pseudomonas aeruginosa, by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays. In contrast to common assumptions, all porins were dispensable for Pseudomonas growth in rich medium and consumption of diverse hydrophilic nutrients. However, preferred nutrients with two or more carboxylate groups such as succinate and citrate permeated poorly in the absence of porins. Porins provided efficient translocation pathways for these nutrients with broad and overlapping substrate selectivity while efficiently excluding all tested antibiotics except carbapenems, which partially entered through OprD. Porin-independent permeation of antibiotics through the outer-membrane lipid bilayer was hampered by carboxylate groups, consistent with our nutrient data. Together, these results challenge common assumptions about the role of porins by demonstrating porin-independent permeation of the outer-membrane lipid bilayer as a major pathway for nutrient and drug entry into the bacterial cell.


2021 ◽  
Author(s):  
Malgorzata Sobota ◽  
Pilar Natalia Rodilla Ramirez ◽  
Alexander Cambre ◽  
Tiphaine Haas ◽  
Delphine Cornillet ◽  
...  

Environmental cues modulate the expression of virulence in bacterial pathogens. However, while cues that upregulate virulence are often intuitive and mechanistically well understood, this is less so for cues that downregulate virulence. In this study, we noticed that upregulation of the HilD virulence regulon in Salmonella Typhimurium (S.Tm) sensitized cells to membrane stress mediated by cholate, Tris/EDTA or heat. Further monitoring of membrane status and stress resistance of S.Tm cells in relation to virulence expression, revealed that co-expressed virulence factors embedded in the envelope (including the Type Three Secretion System 1 and the flagella) increased permeability, and stress sensitivity of the membrane. Importantly, pretreating the bacteria by sublethal stress inhibited virulence expression and restored stress resistance. As such, these results demonstrate a trade-off between virulence and stress resistance, which explains the downregulation of virulence expression in response to harsh environments in S.Tm.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Connor J. Beebout ◽  
Levy A. Sominsky ◽  
Allison R. Eberly ◽  
Gerald T. Van Horn ◽  
Maria Hadjifrangiskou

AbstractNutrient gradients in biofilms cause bacteria to organize into metabolically versatile communities capable of withstanding threats from external agents including bacteriophages, phagocytes, and antibiotics. We previously determined that oxygen availability spatially organizes respiration in uropathogenic Escherichia coli biofilms, and that the high-affinity respiratory quinol oxidase cytochrome bd is necessary for extracellular matrix production and biofilm development. In this study we investigate the physiologic consequences of cytochrome bd deficiency in biofilms and determine that loss of cytochrome bd induces a biofilm-specific increase in expression of general diffusion porins, leading to elevated outer membrane permeability. In addition, loss of cytochrome bd impedes the proton mediated efflux of noxious chemicals by diminishing respiratory flux. As a result, loss of cytochrome bd enhances cellular accumulation of noxious chemicals and increases biofilm susceptibility to antibiotics. These results identify an undescribed link between E. coli biofilm respiration and stress tolerance, while suggesting the possibility of inhibiting cytochrome bd as an antibiofilm therapeutic approach.


2021 ◽  
Vol 22 (6) ◽  
pp. 3051
Author(s):  
Silvia López-Argüello ◽  
María Montaner ◽  
Antonio Oliver ◽  
Bartolome Moya

Avibactam belongs to the new class of diazabicyclooctane β-lactamase inhibitors. Its inhibitory spectrum includes class A, C and D enzymes, including P. aeruginosa AmpC. Nonetheless, recent reports have revealed strain-dependent avibactam AmpC induction. In the present work, we wanted to assess the mechanistic basis underlying AmpC induction and determine if derepressed PDC-X mutated enzymes from ceftazidime/avibactam-resistant clinical isolates were further inducible. We determined avibactam concentrations that half-maximally inhibited (IC50) bocillin FL binding. Inducer β-lactams were also studied as comparators. Live cells’ time-course penicillin-binding proteins (PBPs) occupancy of avibactam was studied. To assess the ampC induction capacity of avibactam and comparators, qRT-PCR was performed in wild-type PAO1, PBP4, triple PBP4, 5/6 and 7 knockout derivatives and two ceftazidime/avibactam-susceptible/resistant XDR clinical isolates belonging to the epidemic high-risk clone ST175. PBP4 inhibition was observed for avibactam and β-lactam comparators. Induction capacity was consistently correlated with PBP4 binding affinity. Outer membrane permeability-limited PBP4 binding was observed in the live cells’ assay. As expected, imipenem and cefoxitin showed strong induction in PAO1, especially for carbapenem; avibactam induction was conversely weaker. Overall, the inducer effect was less remarkable in ampC-derepressed mutants and nonetheless absent upon avibactam exposure in the clinical isolates harboring mutated AmpC variants and their parental strains.


Sign in / Sign up

Export Citation Format

Share Document