scholarly journals Isolation of ribosomal RNA operons ofStreptomyces lividansand sequence analysis of a 5S-rRNA gene

1991 ◽  
Vol 82 (3) ◽  
pp. 335-339 ◽  
Author(s):  
Reinhard Sedlmeier ◽  
Gudrun Linti ◽  
Horst Schmieger
2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Mahipal Singh ◽  
Pushpa Yadav ◽  
Anand K. Yadav

The 5S ribosomal RNA gene(s) and their associated intergenic spacer regions were amplified from Carica papaya and Carica quercifolia by polymerase chain reaction. Both Carica species exhibited differently sized amplification products. Sequence analysis of these PCR products revealed that the 5S rRNA genes are arranged as tandem repeats in these regions. Sequence data revealed that the 5S rRNA gene from Carica quercifolia was 119 bp in length. Sequence variation was observed in various 5S rRNA gene copies cloned from Carica quercifolia. Only truncated 5S rRNA gene but with its full spacer region was recovered from Carica papaya. Interestingly, intergenic spacer sequence cloned from Carica papaya contained two specific domains, a 30bp “CT” rich domain exhibiting 95-100% homology to several human chromosomes and a domain matching with mitrocomin precursor, a photo-protein from Mitrocoma cellularia. The role of 5S rRNA gene and their spacer regions in discerning the germplasm and in adaptation of the species is discussed.


Genome ◽  
2000 ◽  
Vol 43 (1) ◽  
pp. 213-215 ◽  
Author(s):  
Guy Drouin

The analyses of previously described 5S rRNA gene sequences show that some of the expressed 5S rRNA genes present in the mouse and rat genomes were derived from the retrotransposition of 5S rRNA transcripts. These analyses demonstrate that new 5S rRNA gene copies can originate by retrotransposition and that some of these retrotranscribed genes are expressed. Key words: 5S ribosomal RNA genes, retrotransposition, retroposons.


1989 ◽  
Vol 9 (10) ◽  
pp. 4416-4421
Author(s):  
W S Grayburn ◽  
E U Selker

5S rRNA genes of Neurospora crassa are generally dispersed in the genome and are unmethylated. The xi-eta region of Oak Ridge strains represents an informative exception. Most of the cytosines in this region, which consists of a diverged tandem duplication of a 0.8-kilobase-pair segment including a 5S rRNA gene, appear to be methylated (E. U. Selker and J. N. Stevens, Proc. Natl. Acad. Sci. USA 82:8114-8118, 1985). Previous work demonstrated that the xi-eta region functions as a portable signal for de novo DNA methylation (E. U. Selker and J. N. Stevens, Mol. Cell. Biol. 7:1032-1038, 1987; E. U. Selker, B. C. Jensen, and G. A. Richardson, Science 238:48-53, 1987). To identify the structural basis of this property, we have isolated and characterized an unmethylated allele of the xi-eta region from N. crassa Abbott 4. The Abbott 4 allele includes a single 5S rRNA gene, theta, which is different from all previously identified Neurospora 5S rRNA genes. Sequence analysis suggests that the xi-eta region arose from the theta region by duplication of a 794-base-pair segment followed by 267 G.C to A.T mutations in the duplicated DNA. The distribution of these mutations is not random. We propose that the RIP process of N. crassa (E. U. Selker, E. B. Cambareri, B. C. Jensen, and K. R. Haack, Cell 51:741-752, 1987; E. U. Selker, and P. W. Garrett, Proc. Natl. Acad. Sci. USA 85:6870-6874, 1988; E. B. Cambareri, B. C. Jensen, E. Schabtach, and E. U. Selker, Science 244:1571-1575, 1989) is responsible for the numerous transition mutations and DNA methylation in the xi-eta region. A long homopurine-homopyrimidine stretch immediately following the duplicated segment is 9 base pairs longer in the Oak Ridge allele than in the Abbott 4 allele. Triplex DNA, known to occur in homopurine-homopyrimidine sequences, may have mediated the tandem duplication.


FEBS Letters ◽  
1990 ◽  
Vol 269 (2) ◽  
pp. 358-362 ◽  
Author(s):  
Daniel Besser ◽  
Frank Götz ◽  
Kai Schulze-Forster ◽  
Herbert Wagner ◽  
Hans Kröger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document