scholarly journals SWAP-70-like adapter of T cells: a novel Lck-regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca2+signaling in T cells

2009 ◽  
Vol 232 (1) ◽  
pp. 319-333 ◽  
Author(s):  
Stéphane Bécart ◽  
Amnon Altman
1999 ◽  
Vol 112 (12) ◽  
pp. 1825-1834 ◽  
Author(s):  
K. Seipel ◽  
Q.G. Medley ◽  
N.L. Kedersha ◽  
X.A. Zhang ◽  
S.P. O'Brien ◽  
...  

Rho family GTPases regulate diverse cellular processes, including extracellular signal-mediated actin cytoskeleton reorganization and cell growth. The functions of GTPases are positively regulated by guanine nucleotide exchange factors, which promote the exchange of GDP for GTP. Trio is a complex protein possessing two guanine nucleotide exchange factor domains, each with adjacent pleckstrin homology and SH3 domains, a protein serine/threonine kinase domain with an adjacent immunoglobulin-like domain and multiple spectrin-like domains. To assess the functional role of the two Trio guanine nucleotide exchange factor domains, NIH 3T3 cell lines stably expressing the individual guanine nucleotide exchange factor domains were established and characterized. Expression of the amino-terminal guanine nucleotide exchange factor domain results in prominent membrane ruffling, whereas cells expressing the carboxy-terminal guanine nucleotide exchange factor domain have lamellae that terminate in miniruffles. Moreover, cells expressing the amino-terminal guanine nucleotide exchange factor domain display more rapid cell spreading, haptotactic cell migration and anchorage-independent growth, suggesting that Trio regulates both cell motility and cell growth. Expression of full-length Trio in COS cells also alters actin cytoskeleton organization, as well as the distribution of focal contact sites. These findings support a role for Trio as a multifunctional protein that integrates and amplifies signals involved in coordinating actin remodeling, which is necessary for cell migration and growth.


2000 ◽  
Vol 11 (2) ◽  
pp. 773-793 ◽  
Author(s):  
Erfei Bi ◽  
John B. Chiavetta ◽  
Herman Chen ◽  
Guang-Chao Chen ◽  
Clarence S. M. Chan ◽  
...  

In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p–Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination withMSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation.MSB3 has a close homologue (designatedMSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues inSchizosaccharomyces pombe, Drosophila(pollux), and humans (the oncogenetre17). Deletion of either MSB3 orMSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, andGIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, andMSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.


2001 ◽  
Vol 114 (2) ◽  
pp. 389-399 ◽  
Author(s):  
K. Seipel ◽  
S.P. O'Brien ◽  
E. Iannotti ◽  
Q.G. Medley ◽  
M. Streuli

Reorganization of the actin cytoskeleton is essential to numerous cellular processes including cell locomotion and cytokinesis. This actin remodeling is regulated in part by Rho family GTPases. Previous studies implicated Trio, a Dbl-homology guanine nucleotide exchange factor with two exchange factor domains, in regulating actin cytoskeleton reorganization, cell motility and cell growth via activation of Rho GTPases. Trio is essential for mouse embryonic development and Trio-deficiency is associated with abnormal skeletal muscle and neural tissue development. Furthermore, genetic analyses in Caenorhabditis elegans and Drosophila demonstrate a role for trio-like genes in cell migration and axon guidance. Herein we characterize a novel Trio-binding protein, Tara, that is comprised of an N-terminal pleckstrin homology domain and a C-terminal coiled-coil region. Trio and Tara associate as assessed by the yeast interaction-trap assays and mammalian co-immunoprecipitation studies. Ectopically expressed Tara localizes to F-actin in a periodic pattern that is highly similar to the pattern of myosin II. Furthermore, a direct interaction between Tara and F-actin is indicated by in vitro binding studies. Cells that transiently or stably overexpress Tara display an extensively flattened cell morphology with enhanced stress fibers and cortical F-actin. Tara expression does not alter the ability of the cell to attach or to initially spread, but rather increases cell spreading following these initial events. Tara stabilizes F-actin structures as indicated by the relative resistance of Tara-expressing cells to the F-actin destabilizer Latrunculin B. We propose that Tara regulates actin cytoskeletal organization by directly binding and stabilizing F-actin, and that the localized formation of Tara and Trio complexes functions to coordinate actin remodeling.


Sign in / Sign up

Export Citation Format

Share Document