Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity

2011 ◽  
Vol 21 (6) ◽  
pp. e231-e241 ◽  
Author(s):  
A. Kacin ◽  
K. Strazar
2020 ◽  
Vol 11 ◽  
Author(s):  
Vittore Verratti ◽  
Danilo Bondi ◽  
Gabriele Mulliri ◽  
Giovanna Ghiani ◽  
Antonio Crisafulli ◽  
...  

2018 ◽  
Vol 24 (2) ◽  
pp. 125-129 ◽  
Author(s):  
Amanda Veiga Sardeli ◽  
Marina Lívia Venturini Ferreira ◽  
Lucas do Carmo Santos ◽  
Marília de Souza Rodrigues ◽  
Alfredo Damasceno ◽  
...  

ABSTRACT Introduction: Resistance exercise (RE) training is widely recommended for increasing muscle strength and mass in older adults. RE is also a potential stimulus to improve cognitive functions (CF), but the best protocol for this purpose is unknown. Objective: To compare the effects of different RE protocols on CF in the same group of individuals. Methods: Twenty-four older adults were randomized (cross over) to control (CON) and lower limb RE protocols with high load (HL - 80% of 1RM), low load (LL - 30% of 1RM) and LL with blood flow restriction (LL-BFR - 30% of 1RM and 50% BFR). For CF assessment, participants underwent the Stroop test before and after each RE protocol. Results: Reduction in response time for Stroop neutral stimuli was greater after LL (effect size (ES) = -0.92) compared to CON (ES = -0.18) and HL (ES = -0.03), but was not different from LL-BFR (ES = -0.24). The reduced response time was associated with reduced parasympathetic modulation and increased cardiac output across protocols. Conclusion: LL was the most effective RE protocol to improve CF of older adults and a potential beneficial effect of LL-BFR on CF (non-significant) was identified. Therefore, LL resistance exercise appears to stimulate acute cognitive improvements in healthy older adults, probably through exercise-induced optimal autonomic modulation changes. Level of Evidence I; Therapeutic studies-Investigating the results of treatment.


2020 ◽  
Vol 318 (2) ◽  
pp. R284-R295 ◽  
Author(s):  
Christopher Pignanelli ◽  
Heather L. Petrick ◽  
Fatemeh Keyvani ◽  
George J. F. Heigenhauser ◽  
Joe Quadrilatero ◽  
...  

The application of blood flow restriction (BFR) during resistance exercise is increasingly recognized for its ability to improve rehabilitation and for its effectiveness in increasing muscle hypertrophy and strength among healthy populations. However, direct comparison of the skeletal muscle adaptations to low-load resistance exercise (LL-RE) and low-load BFR resistance exercise (LL-BFR) performed to task failure is lacking. Using a within-subject design, we examined whole muscle group and skeletal muscle adaptations to 6 wk of LL-RE and LL-BFR training to repetition failure. Muscle strength and size outcomes were similar for both types of training, despite ~33% lower total exercise volume (load × repetition) with LL-BFR than LL-RE (28,544 ± 1,771 vs. 18,949 ± 1,541 kg, P = 0.004). After training, only LL-BFR improved the average power output throughout the midportion of a voluntary muscle endurance task. Specifically, LL-BFR training sustained an 18% greater power output from baseline and resulted in a greater change from baseline than LL-RE (19 ± 3 vs. 3 ± 4 W, P = 0.008). This improvement occurred despite histological analysis revealing similar increases in capillary content of type I muscle fibers following LL-RE and LL-BFR training, which was primarily driven by increased capillary contacts (4.53 ± 0.23 before training vs. 5.33 ± 0.27 and 5.17 ± 0.25 after LL-RE and LL-BFR, respectively, both P < 0.05). Moreover, maximally supported mitochondrial respiratory capacity increased only in the LL-RE leg by 30% from baseline ( P = 0.006). Overall, low-load resistance training increased indexes of muscle oxidative capacity and strength, which were not further augmented with the application of BFR. However, performance on a muscle endurance test was improved following BFR training.


2012 ◽  
Vol 113 (7) ◽  
pp. 1012-1023 ◽  
Author(s):  
Zafeiris Louvaris ◽  
Spyros Zakynthinos ◽  
Andrea Aliverti ◽  
Helmut Habazettl ◽  
Maroula Vasilopoulou ◽  
...  

Some reports suggest that heliox breathing during exercise may improve peripheral muscle oxygen availability in patients with chronic obstructive pulmonary disease (COPD). Besides COPD patients who dynamically hyperinflate during exercise (hyperinflators), there are patients who do not hyperinflate (non-hyperinflators). As heliox breathing may differently affect cardiac output in hyperinflators (by increasing preload and decreasing afterload of both ventricles) and non-hyperinflators (by increasing venous return) during exercise, it was reasoned that heliox administration would improve peripheral muscle oxygen delivery possibly by different mechanisms in those two COPD categories. Chest wall volume and respiratory muscle activity were determined during constant-load exercise at 75% peak capacity to exhaustion, while breathing room air or normoxic heliox in 17 COPD patients: 9 hyperinflators (forced expiratory volume in 1 s = 39 ± 5% predicted), and 8 non-hyperinflators (forced expiratory volume in 1 s = 48 ± 5% predicted). Quadriceps muscle blood flow was measured by near-infrared spectroscopy using indocyanine green dye. Hyperinflators and non-hyperinflators demonstrated comparable improvements in endurance time during heliox (231 ± 23 and 257 ± 28 s, respectively). At exhaustion in room air, expiratory muscle activity (expressed by peak-expiratory gastric pressure) was lower in hyperinflators than in non-hyperinflators. In hyperinflators, heliox reduced end-expiratory chest wall volume and diaphragmatic activity, and increased arterial oxygen content (by 17.8 ± 2.5 ml/l), whereas, in non-hyperinflators, heliox reduced peak-expiratory gastric pressure and increased systemic vascular conductance (by 11.0 ± 2.8 ml·min−1·mmHg−1). Quadriceps muscle blood flow and oxygen delivery significantly improved during heliox compared with room air by a comparable magnitude (in hyperinflators by 6.1 ± 1.3 ml·min−1·100 g−1 and 1.3 ± 0.3 ml O2·min−1·100 g−1, and in non-hyperinflators by 7.2 ± 1.6 ml·min−1·100 g−1 and 1.6 ± 0.3 ml O2·min−1·100 g−1, respectively). Despite similar increase in locomotor muscle oxygen delivery with heliox in both groups, the mechanisms of such improvements were different: 1) in hyperinflators, heliox increased arterial oxygen content and quadriceps blood flow at similar cardiac output, whereas 2) in non-hyperinflators, heliox improved central hemodynamics and increased systemic vascular conductance and quadriceps blood flow at similar arterial oxygen content.


Sports ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 269-280 ◽  
Author(s):  
Nathaniel Jenkins ◽  
Terry Housh ◽  
Samuel Buckner ◽  
Haley Bergstrom ◽  
Kristen Cochrane ◽  
...  

2013 ◽  
Vol 115 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Julie E. A. Hunt ◽  
Dermot Galea ◽  
Graham Tufft ◽  
Danny Bunce ◽  
Richard A. Ferguson

Distortion to hemodynamic and ischemic stimuli during blood flow restriction (BFR) exercise may influence regional vascular adaptation. We examined changes at the conduit, resistance, and capillary level in response to low load resistance exercise with BFR. Eleven males (22 ± 3 yr, 178 ± 4 cm, 78 ± 9 kg) completed 6 wk (3 days/wk) unilateral plantar flexion training with BFR at 30% 1 repetition maximum (1-RM). The contralateral leg acted as a nonexercised control (CON). Popliteal artery function [flow-mediated dilation, FMD%] and structure [maximal diameter] and resistance vessel structure [peak reactive hyperemia] were assessed using Doppler ultrasound before and at 2-wk intervals. Calf filtration capacity was assessed using venous occlusion plethysmography before and after training. BFR training elicited an early increase in peak reactive hyperemia (1,400 ± 278 vs. 1,716 ± 362 ml/min at 0 vs. 2 wk; t-test: P = 0.047), a transient improvement in popliteal FMD% (5.0 ± 2.1, 7.6 ± 2.9, 6.6 ± 2.1, 5.7 ± 1.6% at 0, 2, 4 and 6 wk, respectively; ANOVA: P = 0.002), and an increase in maximum diameter (6.06 ± 0.44 vs. 6.26 ± 0.39 mm at 0 vs. 6 wk; Bonferroni t-test: P = 0.048). Capillary filtration increased after 6 wk BFR training ( P = 0.043). No changes in the CON leg were observed. Adaptation occurred at all levels of the vascular tree in response to low load resistance exercise with BFR. Enhanced peak reactive hyperemia and transient improvement in popliteal artery function occurred before changes in artery structural capacity.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 614-615
Author(s):  
Adam Johnston ◽  
Ryan P. Kelly ◽  
Michaela Devries ◽  
Tyler Churchward-Venne ◽  
Stuart Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document