scholarly journals Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region—an overview of the airborne in situ and lidar measurements during SAMUM-2

Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
pp. 589-618 ◽  
Author(s):  
Bernadett Weinzierl ◽  
Daniel Sauer ◽  
Michael Esselborn ◽  
Andreas Petzold ◽  
Andreas Veira ◽  
...  
2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2019 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol-cloud-radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single scattering albedo. Most but not all of the biomass-burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single scattering albedo (SSA), absorbing and total aerosol optical depth (AOD and AAOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, EAE) for specific case studies looking at near-coincident and -colocated measurements from multiple instruments, and SSAs for the broader campaign average over the monthlong deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400 > 0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the inter-quartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550 nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2007 ◽  
Vol 7 (4) ◽  
pp. 12657-12686 ◽  
Author(s):  
K. Hungershöfer ◽  
K. Zeromskiene ◽  
Y. Iinuma ◽  
G. Helas ◽  
J. Trentmann ◽  
...  

Abstract. A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU) project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm) for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa), respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.


2017 ◽  
Author(s):  
Sebastian Düsing ◽  
Birgit Wehner ◽  
Patric Seifert ◽  
Albert Ansmann ◽  
Holger Baars ◽  
...  

Abstract. This study presents vertical profiles up to a height of 2300 m a.s.l. of aerosol microphysical and optical properties and cloud condensation nuclei (CCN). Corresponding data have been measured during a field campaign as part of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiments (HOPE), which took place at Melpitz, Germany from September 9 to 29, 2013. The helicopter-borne payload ACTOS (Airborne Cloud and Turbulence Observation System) was used to determine the aerosol particle number size distribution (PNSD), the number concentrations of aerosol particles (PNC) and cloud condensation nuclei (CCN) (CCN-NC), the ambient relative humidity (RH), and temperature (T). Simultaneous measurements on ground provided a holistic view on aerosol microphysical properties such as the PNSD, the chemical composition and the CCN-NC. Additional measurements of a 3 + 2 wavelength polarization lidar system (PollyXT) provided profiles of the aerosol particle light backscatter coefficient (σbsc) for three wavelengths (355, 532 and 1064 nm). From profiles of σbsc profiles of the aerosol particle light extinction coefficient (σext) were determined using the extinction-to-backscatter ratio. Furthermore, CCN-NC profiles were estimated on basis of the lidar-measurements. Ambient state optical properties of aerosol particles were derived on the basis of airborne in situ measurements of ACTOS (PNSD) and in situ measurements on ground (chemical aerosol characterization) using Mie-theory. On the basis of ground-based and airborne measurements, this work investigates the representativeness of ground-based aerosol microphysical properties for the boundary layer for two case-studies. The PNSD measurements on ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative for the PBL when the PBL is well mixed. Locally isolated new particle formation events on ground or at the top of the PBL led to vertical variability in the here presented cases and ground-based measurements are not representative for the PBL. Furthermore, the lidar-based estimates of CCN-NC profiles were compared with the airborne in situ measurements of ACTOS. This comparison showed good agreements within the uncertainty range. Finally, this work provides a closure study between the optical aerosol particle properties in ambient state based on the airborne ACTOS measurements and derived with the lidar measurements. The investigation of the optical properties shows for 14 measurement-points that the airborne-based particle light backscatter coefficient is for 1064 nm 50 % smaller than the measurements of the lidar system, 27.6 % smaller for 532 nm and 29.9 % smaller for 355 nm. These results are quite promising, since in-situ measurement based Mie-calculations of the particle light backscattering are scarce and the modelling is quite challenging. In contradiction for the particle light extinction coefficient retrieved from the airborne in situ measurements were found a good agreement. The airborne-based particle light extinction coefficient was just 7.9 % larger for 532 nm and 3.5 % smaller for 355 nm, for an assumed lidar ratio (LR) of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar-measurements. Also, the correlation for the particle light extinction coefficient in combination with Mie-based LR's are in agreement for typical LR's of European background aerosol.


2019 ◽  
Author(s):  
Chauvigné Aurélien ◽  
Diego Aliaga ◽  
Marcos Andrade ◽  
Patrick Ginot ◽  
Radovan Krejci ◽  
...  

Abstract. We present the variability of aerosol particle optical properties measured at the global Atmosphere Watch (GAW) station Chacaltaya (5240 m a.s.l.). The in-situ mountain site is ideally located to study regional impacts of the densely populated urban area of La Paz/El Alto, and the intensive activity in the Amazonian basin. Four year measurements allow to study aerosol particle properties for distinct atmospheric conditions as stable and turbulent layers, different airmass origins, as well as for wet and dry seasons, including biomass-burning influenced periods. The absorption, scattering and extinction coefficients (median annual values of 0.74, 12.14 and 12.96 Mm−1 respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94 and 8.68 Mm−1 respectively) and higher values during the dry season (0.80, 11.23 and 14.51 Mm−1 respectively). These parameters also show a pronounced diurnal variation (maximum during daytime, minimum during night-time, as a result of the dynamic and convective effects of leading to lower atmospheric layers reaching the site during daytime. Retrieved intensive optical properties are significantly different from one season to the other, showing the influence of different sources of aerosols according to the season. Both intensive and extensive optical properties of aerosols were found to be different among the different atmospheric layers. The particle light absorption, scattering and extinction coefficients are in average 1.94, 1.49 and 1.55 times higher, respectively, in the turbulent layer compared to the stable layer. We observe that the difference is highest during the wet season and lowest during the dry season. Using wavelength dependence of aerosol particle optical properties, we discriminated contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass-burning and urban transport or industries) emissions according to seasons and tropospheric layers. The main sources influencing measurements at CHC are arising from the urban area of La Paz/El Alto, and regional biomass-burning from the Amazonian basin. Results show a 28 % to 80 % increase of the extinction coefficients during the biomass-burning season with respect to the dry season, which is observed in both tropospheric layers. From this analyse, long-term observations at CHC provides the first direct evidence of the impact of emissions in the Amazonian basin on atmospheric optical properties far away from their sources, all the way to the stable layer.


Sign in / Sign up

Export Citation Format

Share Document