absorption efficiency
Recently Published Documents


TOTAL DOCUMENTS

876
(FIVE YEARS 307)

H-INDEX

45
(FIVE YEARS 8)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 216
Author(s):  
Bo Liu ◽  
Wenjing Yu ◽  
Zhendong Yan ◽  
Pinggen Cai ◽  
Fan Gao ◽  
...  

In this study, we investigate a physical mechanism to improve the light absorption efficiency of graphene monolayer from the universal value of 2.3% to about 30% in the visible and near-infrared wavelength range. The physical mechanism is based on the diffraction coupling of surface plasmon polariton resonances in the periodic array of metal nanoparticles. Through the physical mechanism, the electric fields on the surface of graphene monolayer are considerably enhanced. Therefore, the light absorption efficiency of graphene monolayer is greatly improved. To further confirm the physical mechanism, we use an interaction model of double oscillators to explain the positions of the absorption peaks for different array periods. Furthermore, we discuss in detail the emerging conditions of the diffraction coupling of surface plasmon polariton resonances. The results will be beneficial for the design of graphene-based photoelectric devices.


Author(s):  
Jiamao Gao ◽  
Shimin Yu ◽  
Hao Wu ◽  
Yu Wang ◽  
Zhijiang Wang ◽  
...  

Abstract Matching networks are of vital importance for capacitively coupled plasmas to maximize the power transferred to the plasma discharge. The nonlinear interaction between the external circuit and plasma has to be considered to design suitable matching networks. To study the effect of the matching circuit, we coupled PIC/MC model and nonlinear circuit equations based on Kirchhoff’s laws, in a fully nonlinear and self-consistent way. The single-frequency capacitively coupled discharge with ”L”-Type matching networks are simulated. Fully self-consistently results of circuit and plasma parameters are presented and then power absorbed by the plasma and efficiency are calculated. With the tune of the matching network, the efficiency can reach 28.7 %, leading to higher potential as well as higher electron density at fixed source voltage. Besides, only very small components of the third harmonics are found in the plasma voltage and current while surface charge densities have multiple harmonics on account of the strong plasma nonlinearity. Finally, the effects of matching capacitors on discharge are analyzed, results show that smaller Cm1 and Cm2 of 500 pF to 1000 pF may be a proper choice for better matching, resulting in higher voltage across the CCP, and thus higher electron density and power absorption efficiency are obtained.


Author(s):  
Wenke Lu ◽  
Junyan Zhang

Abstract This study investigates the mechanical response of aluminum foam sandwich panels, sandwich cylindrical shells, and sandwich shallow shells under impact loads. First, a finite element model of the sandwich panel was established, and an impact load was applied. The numerical results were compared with theoretical and experimental results to verify the model's effectiveness. Second, the energy absorption efficiency and overall deformation of sandwich panels, sandwich cylindrical shells, and sandwich shallow shells under the same impact load were studied. The research shows that the energy absorption performance of the sandwich shells is better than that of the sandwich panels, and the overall deformation is less than that of the sandwich panels. The effect of increasing panel thickness on the two types of sandwich shell studies is based on this basis. The conclusions describe that increasing the panel thickness will significantly reduce the structure's energy absorption efficiency and deformation. Finally, the effect of single-and double-layer structure on the impact resistance of sandwich shells was studied when the total thickness of the sandwich structure was unchanged. The results show that compared with the single-layer structure, the energy absorption efficiency, overall deformation, and contact force between the projectile and structure of the double-layer structure will be reduced.


2022 ◽  
Author(s):  
Guolin Wu ◽  
Jun Wang ◽  
JinJing Wang ◽  
Zan Feng ◽  
Junkai Sheng ◽  
...  

2022 ◽  
Vol 29 (1) ◽  
pp. 013103
Author(s):  
Xiaoxiao Li ◽  
Xiaohu Yang ◽  
Guobo Zhang ◽  
Yanyun Ma ◽  
Jinlong Jiao ◽  
...  

2022 ◽  
Vol 355 ◽  
pp. 01016
Author(s):  
Juan Ren ◽  
Qingjun Liu ◽  
Ting Chen ◽  
Pingye Deng

There are a lot of principles for sound transmission in the pipeline for whether sound transmission structure or noise reduction structure. Even in ultrasonic testing, there is a large number of principles for using pipeline sound transmission. Based on the sound propagation model and the boundary conditions of pipe wall sound absorption, the sound propagation equation for pipe wall sound absorption is given by establishing mathematical model and solving mathematical equation in this paper. When the distribution of sound field along the cross-section of the pipe (outlet) is ignored, the transmission efficiency of sound with different frequencies can be calculated or the sound absorption efficiency can be calculated. The analytical solution of the sound transmission equation in the pipeline has great theoretical significance and practical value for guiding the structural design of sound transmission and noise reduction, improving the calculation efficiency and verifying the numerical analysis results.


2021 ◽  
Author(s):  
Bo Qian ◽  
Hongri Fan

Abstract In order to solve the problems of low efficiency and complex process in the current generation algorithm and process verification of hexagonal honeycomb structures for complex spatial shapes and arbitrarily curved surfaces, this paper proposes an adaptive hexagonal grid calculation method based on the intracellular splitting iteration method for the first time. This method can better adapt to the complex spatial shape and arbitrary curved surface structure in the three-dimensional space, and it can also achieve the purpose of enhancing the mechanical performance while maintaining the lightweight structure. According to the principle of the above algorithm, different structural models including honeycomb cells are calculated and generated. 316L Stainless Steel material and Selective Laser Melting additive manufacturing processes are also used for printing actual samples. The printed samples are mechanically compressed. According to the results of the compression curve, the critical yield force of the honeycomb grid parts with iteration is higher than that of the homogeneous honeycomb grid parts, and the value is basically greater than 30%-40%. Finally, the energy absorption efficiency can be increased by more than 20% according to the compression characteristics of the adaptive iterative honeycomb analyzed.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 124
Author(s):  
Jun Ho Lee ◽  
Geon Young Lee ◽  
Jong-joo Rha ◽  
Ji Hoon Kim ◽  
Jae-Hyung Cho

Based on electron backscatter diffraction (EBSD), hollow structures of Ni foam struts fabricated by electroplating on a chemically removable template were observed. Three-dimensional (3D) pore structures of Ni foams were also obtained using X-ray computed tomography (CT), and microstructural features such as porosity, pore size and strut thickness were statistically quantified. Evolution of microstructure and mechanical properties during ex situ compression of open-cell Ni-foams was investigated based on X-ray CT, and experimental results were compared with predictions by the finite element method (FEM). 3D microstructures obtained by X-ray CT revealed that the stress drop started with the buckling of struts at the center of the Ni-foams. The flow stress increased after the buckling of the struts spreads to most of the regions. For effective simulation of the compressive deformation and determination of the microstructural evolution, small domains of interest were selected from the entire set of observed 3D microstructures based on X-ray CT, and struts of Ni foams with a hollow structure were simplified with relevant thin-solid struts. Numerical 3D modeling comprehensively disclosed that compression caused the transverse buckling of the struts, with the bending and buckling of struts thus reducing the stress. Thickness variation of the struts causes a change in the porosity of Ni-foams without a change in pore shape or connectivity. The overall range of strut thickness was from 59 to 133 μm, and the range of porosity values was from 80% to 93.7%. A stress drop was predicted with a decrease in the strut thickness or an increase in the porosity, as measured experimentally. It was also found that the stress drop contributed to an increase in the calculated energy absorption efficiency.


Sign in / Sign up

Export Citation Format

Share Document