scholarly journals THE CYTOLOGICAL BEHAVIOUR OF ACCESSORY CHROMOSOMES IN CENTAUREA SCABIOSA

Hereditas ◽  
2010 ◽  
Vol 42 (3-4) ◽  
pp. 415-430 ◽  
Author(s):  
S. FRÖST
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Thomas E. Witte ◽  
Linda J. Harris ◽  
Hai D. T. Nguyen ◽  
Anne Hermans ◽  
Anne Johnston ◽  
...  

Abstract Background Fusarium head blight is a disease of global concern that reduces crop yields and renders grains unfit for consumption due to mycotoxin contamination. Fusarium poae is frequently associated with cereal crops showing symptoms of Fusarium head blight. While previous studies have shown F. poae isolates produce a range of known mycotoxins, including type A and B trichothecenes, fusarins and beauvericin, genomic analysis suggests that this species may have lineage-specific accessory chromosomes with secondary metabolite biosynthetic gene clusters awaiting description. Methods We examined the biosynthetic potential of 38 F. poae isolates from Eastern Canada using a combination of long-read and short-read genome sequencing and untargeted, high resolution mass spectrometry metabolome analysis of extracts from isolates cultured in multiple media conditions. Results A high-quality assembly of isolate DAOMC 252244 (Fp157) contained four core chromosomes as well as seven additional contigs with traits associated with accessory chromosomes. One of the predicted accessory contigs harbours a functional biosynthetic gene cluster containing homologs of all genes associated with the production of apicidins. Metabolomic and genomic analyses confirm apicidins are produced in 4 of the 38 isolates investigated and genomic PCR screening detected the apicidin synthetase gene APS1 in approximately 7% of Eastern Canadian isolates surveyed. Conclusions Apicidin biosynthesis is linked to isolate-specific putative accessory chromosomes in F. poae. The data produced here are an important resource for furthering our understanding of accessory chromosome evolution and the biosynthetic potential of F. poae.


Genome ◽  
2012 ◽  
Vol 55 (2) ◽  
pp. 164-171 ◽  
Author(s):  
J.P. Chen ◽  
X.H. Ge ◽  
X.C. Yao ◽  
Z.Y. Li

The wild species Brassica fruticulosa Cyr. (FF, 2n = 16) is closely related to the cultivated Brassica species. Through interspecific reciprocal crosses between B. fruticulosa and three cultivated Brassica allotetraploids (AABB, AACC, and BBCC where A = 10, B = 8, and C = 9), four trigenomic hybrids (F.AC, 2n = 27; F.AB, 2n = 26; F.BC, 2n = 25; BC.F, 2n = 25) were produced. By chromosome doubling of respective hybrids, three allohexaploids (FF.AACC, 2n = 54; FF.AABB, 2n = 52; BBCC.FF, 2n = 50) were synthesized. In pollen mother cells (PMCs) of the trigenomic hybrids, 1–2 autosyndetic bivalents were detected within A, B, and C genomes but only one within F genome; 1–3 allosyndetic bivalents between any two genomes were observed, and a closer relationship of F and B genomes than F and A genomes or F and C genomes was revealed. The allohexaploids showed a generally low but different pollen fertilities. The chromosomes in PMCs were predominantly paired as bivalents but some univalents and multivalents at variable frequencies were observed. The bivalents of homologous pairing for each genome prevailed, but allosyndetic quadrivalents and hexavalents involving any two genomes were observed, together with autosyndetic quadrivalents for A, B, and C genomes but not the F genome. The nondiploidized cytological behaviour of these allohexaploids contributed to their low fertility. The relationships between the genome affinity and meiotic behavior in these allohexaploids were discussed.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (11) ◽  
pp. e1006401 ◽  
Author(s):  
H. Charlotte van der Does ◽  
Like Fokkens ◽  
Ally Yang ◽  
Sarah M. Schmidt ◽  
Léon Langereis ◽  
...  

1959 ◽  
Vol 46 (20) ◽  
pp. 584-585 ◽  
Author(s):  
R. A. Pai ◽  
M. S. Swaminathan

Sign in / Sign up

Export Citation Format

Share Document