metabolome analysis
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 303)

H-INDEX

47
(FIVE YEARS 9)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Ji-Woong Kwon ◽  
Ji Hye Im ◽  
Kyue-Yim Lee ◽  
Byong Chul Yoo ◽  
Jun Hwa Lee ◽  
...  

The different molecular profiles of cerebrospinal fluid (CSF) between ventricular and lumbar compartments remain elusive, especially in the context of leptomeningeal metastasis (LM), which affects CSF flow. We evaluated CSF metabolomic and proteomic profiles based on the compartments and the diagnosis of spinal LM, proved by MRI from 20 paired ventricular and lumbar CSF samples of LM patients, including 12 spinal LM (+) samples. In metabolome analysis, 9512 low-mass ions (LMIs) were identified—7 LMIs were abundant in all lumbar versus paired ventricular CSF samples, and 3 LMIs were significantly abundant in all ventricular CSF. In comparisons between spinal LM (+) CSF and LM (−) CSF, 105 LMIs were discriminative for spinal LM (+) CSF. In proteome analysis, a total of 1536 proteins were measured. A total of 18 proteins, including complement C3, were more highly expressed in all lumbar CSF, compared with paired ventricular CSF, while 82 proteins, including coagulation factor V, were higher in the ventricular CSF. Of 37 discriminative proteins, including uteroglobin and complement component C8 gamma chain, 4 were higher in all spinal LM (+) CSF versus spinal LM (−) CSF. We further evaluated metabolic pathways associated with these discriminative proteins using the Gene Ontology database. We found that 16/17 spinal LM (+) pathways, including complement activation, were associated with lumbar discriminative proteins, whereas only 2 pathways were associated with ventricular-discriminative proteins. In conclusion, we determined that metabolite and protein profiles differed between paired lumbar and ventricular CSF samples. The protein profiles of spinal LM (+) CSF showed more similarity with the lumbar CSF than the ventricular CSF. Thus, we suggest that CSF LMIs and proteins could reflect LM disease activity and that LM-associated differences in CSF are more likely to be present in the lumbar compartment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qingping Ma ◽  
Laichao Song ◽  
Zhanhai Niu ◽  
Jingshan Li ◽  
Yu Wang ◽  
...  

“Huangjinya” is a light-sensitive albino variety and is widely cultivated in China. It has been proved that red light could promote the vegetable growth of plants. However, the mechanism of “Huangjinya” in response to a red light is unclear. This study used high-throughput sequencing technology to analyze the transcriptome of tender shoots of “Huangjinya” under the white and red light supplement conditions. At the same time, liquid chromatography tandem mass spectrometry (LC-MS) was used to analyze metabolite changes under different light conditions. Transcriptome analysis revealed that a total of 174 differentially expressed genes (DEGs) were identified after the red light supplement. Kyoto encyclopedia of genes and genomes (KEGG) classification indicated that amino acid metabolism enriched the most DEGs. In addition, two phenylpropanoid metabolism-related genes and five glutathione S-transferase genes (CsGSTs) were found to be expressed differently. Metabolome analysis revealed that 193 differential metabolites were obtained. Being the same as transcriptome analysis, most differential metabolites were enriched in amino acids, sweet and umami tasting amino acids were increased, and bitter-tasting amino acids were decreased after the red light supplement. In summary, red light supplementary treatment may be propitious to the quality of “Huangjinya” due to its regulatory effect on amino acid metabolism. Also, CsGSTs involved phenylpropanoid metabolism contributed to tea quality changes in “Huangjinya.”


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuki Maruyama ◽  
Yuichiro Nishimoto ◽  
Kouta Umezawa ◽  
Ryosuke Kawamata ◽  
Yuko Ichiba ◽  
...  

AbstractSaliva includes a substantial amount of biological information, which has enabled us to understand the relationship between oral metabolites and various oral and systemic disorders. However, collecting saliva using a controlled protocol is time-consuming, making saliva an unsuitable analyte in large cohort studies. Mouth-rinsed water (MW), the water used to rinse the mouth, can be collected easily in less time with less difference between subjects than saliva and could be used as an alternative in oral metabolome analyses. In this study, we investigated the potential of MW collection as an efficient alternative to saliva sample collection for oral metabolome profiling. MW, stimulated saliva, and unstimulated saliva were collected from 10 systemically healthy participants. The samples were subjected to metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry, and the types and amounts of metabolites in the samples were compared. Qualitatively, MW contained the same metabolites as unstimulated and stimulated saliva. While the quantity of the metabolites did not drastically change between the sampling methods, all three reflected individual differences, and the features of MW were the same as those of the unstimulated saliva. Overall, these results suggest that MW may be an appropriate alternative to saliva in oral metabolome profile analysis.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 57
Author(s):  
Xinxin Lu ◽  
Lei Zhang ◽  
Wenyue Huang ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
...  

Turnip mosaic virus (TuMV), which is distributed almost all over the world and has a wide range of hosts, mainly brassica crops, was first described in Brassica rapa in the USA. Plant volatile compounds play an important role in the host searching behavior of natural enemies of herbivorous insects. In this study, TuMV-inoculated resistant and susceptible B. rapa lines were tested using volatile metabolome and transcriptome analyses. In volatile metabolome analysis, the volatile organic compounds (VOCs) were different after inoculation with TuMV in resistant B80124 and susceptible B80461, and the degree of downregulation of differentially expressed metabolites was more obvious than the degree of upregulation. Through transcriptome analysis, 70% of differentially expressed genes were in biological process, especially focusing on defense response, flavonoid biosynthetic process, and toxin metabolic process, which indicates that TuMV stress maybe accelerate the increase of VOCs. Integrating the metabolome and transcriptome analyses, after inoculating with TuMV, auxin regulation was upregulated, and ARF, IAA and GH3 were also upregulated, which accelerated cell enlargement and plant growth in tryptophan metabolism. The different genes in zeatin biosynthesis pathways were downregulated, which reduced cell division and shoot initiation. However, the metabolite pathways showed upregulation in brassinosteroid biosynthesis and α-linolenic acid metabolism, which could cause cell enlargement and a stress response. This study determined the difference in volatiles between normal plants and infected plants and may lay a foundation for anti-TuMV research in B. rapa.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Vanessa Neto ◽  
Sara Esteves-Ferreira ◽  
Isabel Inácio ◽  
Márcia Alves ◽  
Rosa Dantas ◽  
...  

Thyroid cancer’s incidence has increased in the last decades, and its diagnosis can be a challenge. Further and complementary testing based in biochemical alterations may be important to correctly identify thyroid cancer and prevent unnecessary surgery. Fourier-transform infrared (FTIR) spectroscopy is a metabolomic technique that has already shown promising results in cancer metabolome analysis of neoplastic thyroid tissue, in the identification and classification of prostate tumor tissues and of breast carcinoma, among others. This work aims to gather and discuss published information on the ability of FTIR spectroscopy to be used in metabolomic studies of the thyroid, including discriminating between benign and malignant thyroid samples and grading and classifying different types of thyroid tumors.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Tatsuya Sato ◽  
Nobutoshi Ichise ◽  
Takeshi Kobayashi ◽  
Hiroyori Fusagawa ◽  
Hiroya Yamazaki ◽  
...  

AbstractThe initiation of heartbeat is an essential step in cardiogenesis in the heart primordium, but it remains unclear how intracellular metabolism responds to increased energy demands after heartbeat initiation. In this study, embryos in Wistar rats at embryonic day 10, at which heartbeat begins in rats, were divided into two groups by the heart primordium before and after heartbeat initiation and their metabolic characteristics were assessed. Metabolome analysis revealed that increased levels of ATP, a main product of glucose catabolism, and reduced glutathione, a by-product of the pentose phosphate pathway, were the major determinants in the heart primordium after heartbeat initiation. Glycolytic capacity and ATP synthesis-linked mitochondrial respiration were significantly increased, but subunits in complexes of mitochondrial oxidative phosphorylation were not upregulated in the heart primordium after heartbeat initiation. Hypoxia-inducible factor (HIF)-1α was activated and a glucose transporter and rate-limiting enzymes of the glycolytic and pentose phosphate pathways, which are HIF-1α-downstream targets, were upregulated in the heart primordium after heartbeat initiation. These results suggest that the HIF-1α-mediated enhancement of glycolysis with activation of the pentose phosphate pathway, potentially leading to antioxidant defense and nucleotide biosynthesis, covers the increased energy demand in the beating and developing heart primordium.


Author(s):  
Jie Liu ◽  
Xiongjie Zhang ◽  
Jinhua Sheng

Abstract Saline–alkali stress is a major abiotic stress affecting the quality and yield of crops. Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus) is a well-known medicine food homology species with various pharmacological effects and health benefits that can grow well in saline–alkali soil. However, the molecular mechanisms underlying the adaptation of A. mongholicus plants to saline–alkali stress have not yet been clarified. Here, A. mongholicus plants were exposed to long-term saline–alkali stress (200 mmol·L -1 mixed saline–alkali solution), which limited the growth of A. mongholicus. The roots of A. mongholicus could resist long-term saline–alkali stress by increasing the activity of antioxidant enzymes and the content of osmolytes. Transcriptome analysis (via the Illumina platform) and metabolome analysis (via the Nexera UPLC Series QE Liquid Mass Coupling System) revealed that saline–alkali stress altered the activity of various metabolic pathways (e.g., amino acid metabolism, carbohydrate metabolism, lipid metabolism, and biosynthesis of other secondary metabolites). A total of 3,690 differentially expressed genes (DEGs) and 997 differentially accumulated metabolites (DAMs) were identified in A. mongholicus roots under saline–alkali stress, and flavonoid-related DEGs and DAMs were significantly up-regulated. Pearson correlation analysis revealed significant correlations between DEGs and DAMs related to flavonoid metabolism. MYB transcription factors might also contribute to the regulation of flavonoid biosynthesis. Overall, the results indicate that A. mongholicus plants adapt to saline–alkali stress by up-regulating the biosynthesis of flavonoids, which enhances the medicinal value of A. mongholicus.


2022 ◽  
Vol 23 (1) ◽  
pp. 536
Author(s):  
Chaochen Yang ◽  
Pengfei Wu ◽  
Xiaohua Yao ◽  
Yu Sheng ◽  
Chengcai Zhang ◽  
...  

Camellia oleifera (Ca. oleifera) is a woody tree species cultivated for the production of edible oil from its seed. The growth and yield of tea-oil trees are severely affected by anthracnose (caused by Colletotrichum gloeosporioides). In this study, the transcriptomic and metabolomic analyses were performed to detect the key transcripts and metabolites associated with differences in the susceptibility between anthracnose-resistant (ChangLin150) and susceptible (ChangLin102) varieties of Ca. oleifera. In total, 5001 differentially expressed genes (DEGs) were obtained, of which 479 DEGs were common between the susceptible and resistant varieties and further analyzed. KEGG enrichment analysis showed that these DEGs were significantly enriched in tyrosine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and isoquinoline alkaloid biosynthesis pathways. Furthermore, 68 differentially accumulated metabolites (DAMs) were detected, including flavonoids, such as epicatechin, phenethyl caffeate and procyanidin B2. Comparison of the DEGs and DAMs revealed that epicatechin, procyanidin B2 and arachidonic acid (peroxide free) are potentially important. The expression patterns of genes involved in flavonoid biosynthesis were confirmed by qRT-PCR. These results suggested that flavonoid biosynthesis might play an important role in the fight against anthracnose. This study provides valuable molecular information about the response of Ca. oleifera to Co. gloeosporioides infection and will aid the selection of resistant varieties using marker-assisted breeding.


Sign in / Sign up

Export Citation Format

Share Document