scholarly journals Aegyptin displays high-affinity for the von Willebrand factor binding site (RGQOGVMGF) in collagen and inhibits carotid thrombus formation in vivo

FEBS Journal ◽  
2009 ◽  
Vol 277 (2) ◽  
pp. 413-427 ◽  
Author(s):  
Eric Calvo ◽  
Fuyuki Tokumasu ◽  
Daniella M. Mizurini ◽  
Peter McPhie ◽  
David L. Narum ◽  
...  
2020 ◽  
Vol 120 (03) ◽  
pp. 466-476
Author(s):  
Sibgha Tahir ◽  
Andreas H. Wagner ◽  
Steffen Dietzel ◽  
Hanna Mannell ◽  
Joachim Pircher ◽  
...  

Abstract Background von Willebrand factor (vWF) plays an important role in platelet activation. CD40–CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels in vivo, whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes. Methods and Results The role of CD40L in the formation of beaded platelet strings reflecting their adhesion to ultralarge vWF fibers (ULVWF) was analyzed in the murine cremaster microcirculation in vivo. Expression of CD40 and vWF was studied by immunohistochemistry in isolated and fixed cremasters. Microvascular CD40 was only expressed under inflammatory conditions and exclusively in venous endothelium. We demonstrate that CD40L treatment augmented the number of platelet strings, reflecting ULVWF multimer formation exclusively in venules and small veins. In ADAMTS13 knockout mice, the number of platelet strings further increased to a significant extent. As a consequence extensive thrombus formation was induced in venules of ADAMTS13 knockout mice. In addition, circulating leukocytes showed primary and rapid adherence to these platelet strings followed by preferential extravasation in these areas. Conclusion CD40L is an important stimulus of microvascular endothelial ULVWF release, subsequent platelet string formation and leukocyte extravasation but only in venous vessels under inflammatory conditions. Here, the lack of ADAMTS13 leads to severe thrombus formation. The results identify CD40 expression and ADAMTS13 activity as important targets to prevent microvascular inflammatory thrombosis.


2001 ◽  
Vol 85 (05) ◽  
pp. 837-844 ◽  
Author(s):  
Angela Bertagna ◽  
Nadia Jahroudi

SummaryIonizing irradiation in patients is proposed to cause thrombus formation. An increase in von Willebrand factor secretion in response to irradiation is a major contributing factor to thrombus formation. We have previously reported that the increased VWF secretion in response to irradiation is mediated at the transcriptional level. The VWF core promoter fragment (sequences –90 to +22) was shown to contain the necessary cis-acting element(s) to mediate the irradiation response of the VWF gene. Here we report that a CCAAT element in the VWF promoter is the cis-acting element necessary for irradiation induction and that the NFY transcription factor interacts with this element. These analyses demonstrate that inhibition of NFY’s interaction with the CCAAT element abolishes the irradiation induction of the VWF promoter. These results provide a novel role for NFY and add this factor to the small list of irradiation-responsive transcription factors. Coimmunoprecipitation experiments demonstrated that NFY is associated with the histone acetylase P/CAF in vivo and that irradiation resulted in an increased association of NFY with coactivator P/CAF. We propose that irradiation induction of the VWF promoter involves a mechanism resulting in increased recruitment of the coactivator P/CAF to the promoter via the NFY transcription factor.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2707-2707
Author(s):  
Takanori Moriki ◽  
Ichiro N. Maruyama ◽  
Yusuke Yamaguchi ◽  
Atsuko Igari ◽  
Yasuo Ikeda ◽  
...  

Abstract The metalloprotease ADAMTS13 cleaves multimeric von Willebrand factor (VWF) to regulate VWF-mediated thrombus formation. We planned to search core epitopes of ADAMTS13 that is required for its binding to VWF. We constructed a random cDNA fragment library expressing various peptides of ADAMTS13 on the surface of lambda phage and screened the library using immobilized VWF as a probe. After the first screening, the C-terminus of the spacer domain from Arg670 to Glu684 (termed as epitope-1) and the middle of the cysteine-rich domain from Arg484 to Arg507 (epitope-2) were determined as epitopes. When we added the synthetic epitope-1 peptide to the second screening, a new site, from Pro618 to Glu641 (epitope-3), was found in the middle of spacer domain. While the presence of synthetic epitope-2 peptide did not affect the subsequent screening, the presence of epitope-3 peptide enhanced the isolation of clones encoding epitope-1. These results suggest that ADAMTS13 epitopes-1, -2 and -3 may interact with each other for their binding to VWF. From screening in the presence of any combination or all of the three synthetic peptides, however, no new VWF binding site was uncovered. To examine the effect of divalent metal cations on the binding of ADAMTS13 epitopes to immobilized VWF, screening was carried out in the presence or absence of 5 mM of EDTA. No new epitope site was found. We next explored inhibitory effect of the synthetic epitope peptides on ADAMTS13 protease activity using recombinant ADAMTS13 and FRETS-VWF73 as a substrate. Synthetic epitopes-2 and -3 peptides markedly inhibited the cleavage of VWF by ADAMTS13, while the synthetic epitope-1 peptide did not as efficiently as epitopes-2 and -3. The stronger inhibitory effect of epitope-3 peptide than that of epitope-1 peptide was confirmed by SDS-agarose gel electrophoresis analysis of cleavage products of denatured multimeric VWF molecules by recombinant ADAMTS13. This was consistent with the dissociation constants for the three synthetic peptides with immobilized VWF determined by surface plasmon resonance, in which epitopes-2 and -3 have higher affinities for VWF than that of epitope-1. The results described above suggest that ADAMTS13 may initially bind to immobilized VWF through the sites of epitope-1 and epitope-2 with relatively weak affinity. The binding of epitope-1 to VWF may subsequently induce the conformational change of VWF, thereby exposing a binding site for epitope-3 for the efficient catalytic cleavage of VWF by ADAMTS13.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4317-4317
Author(s):  
Junmei Chen ◽  
Min hua Ling ◽  
José A. López ◽  
Dominic W. Chung

Abstract Abstract 4317 Ristocetin, a peptide antibiotic from the soil bacterium Nocardia lurida, has been used for decades as a tool to diagnose deficiency or dysfunction of von Willebrand factor (VWF) in von Willebrand disease. Ristocetin is able to assess the functional state of VWF because it induces the interaction of VWF with the platelet glycoprotein (GP) Ib-IX-V complex in the absence of shear stress or VWF immobilization, conditions normally required in vivo for their interaction. Presumably, ristocetin is able to do this by inducing an allosteric change in VWF that exposes the binding site for GPIbα. Ristocetin is one of two widely used modulators of the VWF–GPIb α interaction (the other being botrocetin), and the one that induces an interaction that most closely mimics shear-induced platelet adhesion and aggregation. Recently, Shim et al, (Blood, 2008;111(2):651-7) demonstrated that VWF bound to platelets was a better substrate for the plasma metalloprotease ADAMTS13, raising the possibility that exposure of the GPIbα binding site on VWF could be coupled to exposure of the ADAMTS13 cleavage site. Another possibility would be that the tensile force experienced by a VWF strand with multiple bound platelets in a shear field would be sufficient to stretch VWF and expose the ADAMTS13 cleavage site. We therefore evaluated whether ristocetin alone could enhance ADAMTS13 cleavage of VWF in the absence of shear force. We used four VWF sources for these experiments: plasma; purified, multimeric VWF from plasma; a recombinant fragment encompassing the three A domains (A1A2A3); and two recombinant A2 domains, one containing a previously identified ristocetin-binding site between D1459 and P1465, and the other lacking it. Ristocetin at 1.0 mg/ml induced the cleavage of VWF by ADAMTS13 in plasma or of the purified multimeric form as efficiently as did 1.5 M urea, the standard reagent and concentration used for this assay. Similarly, ristocetin accelerated cleavage of the monomeric A1A2A3 fragment. Finally, and somewhat surprisingly, ristocetin accelerated cleavage of the isolated A2 domain, but only when the D1459–P1465 sequence was included in the construct. Vancomycin, a related antibiotic, did not have this effect. Our data suggest that exposure of the ADAMTS13 cleavage site is not only induced by tensile force in vivo, but also by other more subtle biochemical forces. These findings also indicate that exposure of the binding site for GPIbα is coupled to exposure of the ADAMTS13 cleavage site in VWF, perhaps providing part of the explanation for why platelet-bound VWF is a better ADAMTS13 substrate and for why newly released ultralarge VWF is both capable of spontaneously binding platelets and of being cleaved rapidly by ADAMTS13 in the presence of minimal shear stress. Finally, our findings also suggest that ristocetin might be a more specific reagent to evaluate the activity of ADAMTS13 for cleaving multimeric VWF in vitro. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1741-1746 ◽  
Author(s):  
Jeffrey F. W. Keuren ◽  
Dominique Baruch ◽  
Paulette Legendre ◽  
Cécile V. Denis ◽  
Peter J. Lenting ◽  
...  

AbstractFibrin is actively involved in platelet reactions essential for thrombus growth, in which von Willebrand factor (VWF) might be an important mediator. The aim of this study was to localize VWF domains that bind to fibrin and to determine their relevance in platelet adhesion. VWF binds specifically to fibrin with an apparent Kd of 2.2 μg/mL. Competition in the presence of 2 complementary fragments, SpIII (residues 1-1365) and SpII (residues 1366-2050), indicated that the high affinity binding site for fibrin is located in the C-terminal part, thus distinct from the A domains. Comparison of 2 deleted rVWF (ΔD4B-rVWF, ΔC1C2-rVWF) suggested that the C1C2 domains contained a fibrin binding site. This site is distinct from RGD, as shown by binding of D1746G-rVWF to fibrin. Perfusion studies at high shear rate demonstrated that C1C2 domains were required for optimal platelet adhesion to fibrin. With the use of a VWF-deficient mouse model, it was found that plasma VWF is critical for platelet tethering and adhesion to fibrin. These results suggest a dual role of fibrin-bound VWF in thrombus formation: first, fibrin-bound VWF is critical in the recruitment of platelets by way of glycoprotein (GP) Ib, and, second, it contributes to stationary platelet adhesion by way of binding to activated αIIbβ3.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1797-1797 ◽  
Author(s):  
Wolfgang Bergmeier ◽  
Crystal L. Piffath ◽  
Tobias Goerge ◽  
Stephen M. Cifuni ◽  
Zaverio M. Ruggeri ◽  
...  

Abstract GPIbα binding to von Willebrand factor (VWF) exposed at a site of vascular injury is thought to be the first step in the formation of a hemostatic plug. However, our previous studies in VWF-deficient mice demonstrated delayed but not absent arterial thrombus formation suggesting that, under these conditions, GPIbα may bind other ligands or that a receptor other than GPIbα can mediate platelet adhesion. Here we studied thrombus formation in transgenic mice expressing GPIbα in which the extracellular domain was replaced by that of the human interleukin-4 receptor (IL4Rα/GPIbα-tg mice). Platelet adhesion to ferric chloride-treated mesenteric arterioles in IL4Rα/GPIbα-tg mice was virtually absent in contrast to avid adhesion in wild-type (WT) mice. As a consequence, arterial thrombus formation was completely inhibited in the mutant mice. Our studies further show that, when infused into WT recipient mice, IL4Rα/GPIbα-tg platelets or WT platelets lacking the 45 kD N-terminal domain of GPIbα failed to incorporate into growing arterial thrombi, even if the platelets were activated prior to infusion. Surprisingly, platelets lacking β3 integrins, which are unable to form thrombi on their own, incorporated efficiently into WT thrombi. Our studies provide in vivo evidence that GPIbα is absolutely required for recruitment of platelets to both exposed subendothelium and thrombi under arterial flow conditions. Thus, GPIbα contributes to arterial thrombosis by important adhesion mechanisms independent of the binding to VWF.


Blood ◽  
2009 ◽  
Vol 114 (27) ◽  
pp. 5541-5546 ◽  
Author(s):  
Jose A. Guerrero ◽  
Mark Kyei ◽  
Susan Russell ◽  
Junling Liu ◽  
T. Kent Gartner ◽  
...  

AbstractPlatelet-type von Willebrand disease (PT-VWD) is a bleeding disorder of the platelet glycoprotein Ib-IX/von Willebrand factor (VWF) axis caused by mutations in the glycoprotein Ib-IX receptor that lead to an increased affinity with VWF. In this report, platelets from a mouse expressing a mutation associated with PT-VWD have been visualized using state-of-the art image collection and processing. Confocal analysis revealed that VWF bound to the surface of single platelets and bridging micro-aggregates of platelets. Surface-bound VWF appears as a large, linear structure on the surface of 50% of the PT-VWD platelets. In vivo thrombus formation after chemical injury to the carotid artery revealed a severe impairment to occlusion as a consequence of the PT-VWD mutation. In vitro stimulation of PT-VWD platelets with adenosine diphosphate or thrombin demonstrates a significant block in their ability to bind fibrinogen. The impairment of in vivo thrombus formation and in vitro fibrinogen binding are more significant than might be expected from the observed platelet binding to VWF polymers over a small portion of the plasma membrane. Visualization of the receptor/ligand interaction and characterization of a severe antithrombotic phenotype provide a new understanding on the molecular basis of bleeding associated with the PT-VWD phenotype.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4413-4424 ◽  
Author(s):  
Masaaki Moroi ◽  
Stephanie M. Jung ◽  
Shosaku Nomura ◽  
Sadayoshi Sekiguchi ◽  
Antonio Ordinas ◽  
...  

The requisite initial reaction for in vivo thrombus formation in flowing blood is platelet adhesion to the exposed surface of the extracellular matrix. The contribution of von Willebrand factor (vWF ) in plasma and glycoprotein (GP) Ib on the platelet membrane to platelet adhesion has been well-documented. We have recently developed a procedure (the “flow adhesion assay”) for measuring platelet adhesion under flow conditions that allowed us to characterize platelet adhesion to a collagen-coated surface. Here, we apply our method to analyze platelet adhesion to a vWF-coated surface to determine how this might differ from adhesion to a collagen-coated surface. Platelet adhesion to the vWF-coated surface was monitored as the linear increase in the area occupied by adherent platelets. The fluorescence image showed that platelets adhering to the vWF surface were mainly single platelets, and if any were present, the platelet aggregates were small, this being the primary difference from the adhesion to a collagen surface, where adherent platelets were mostly in aggregates. The flow adhesion assay detected the movement of platelets on the vWF surface, suggesting the reversible binding of vWF with platelets. The velocity of the platelets increased at higher shear rates or at lower vWF densities on the surface. Treatment of the vWF-coated surface with the aggregating agent botrocetin before initiation of blood flow increased platelet adhesion while dramatically decreasing the velocity of platelet movement. The present observations on the adhesion of platelets to the vWF-pretreated collagen surface and measurements of the velocity of platelets moving on the collagen surface suggest that the first interaction on the collagen-coated surface is the binding of vWF molecules to the collagen surface. This small number of vWF molecules would serve to attract and slow platelets flowing near the surface. This would facilitate the actual adhesion to the collagen surface that is mainly generated by the interaction between platelet collagen receptors, including GP Ia/IIa and GP VI, with collagen.


Sign in / Sign up

Export Citation Format

Share Document