ALLIINASE IMMOBILIZATION IN CALCIUM ALGINATE BEADS AND LAYERED DOUBLE HYDROXIDES MATRICES

2011 ◽  
Vol 36 (1) ◽  
pp. 12-20 ◽  
Author(s):  
ELENI ANIFANTAKI ◽  
ELEFTHERIOS TOULOUPAKIS ◽  
DEMETRIOS F. GHANOTAKIS
2019 ◽  
Vol 3 (1) ◽  
pp. 22 ◽  
Author(s):  
Andres Borgiallo ◽  
Ricardo Rojas

Layered double hydroxides (LDHs) present multiple applications due to their versatility and reactivity. Thus, Ca–Al LDHs with Friedel’s salt structure (HC) have been proposed as heavy metal scavengers due to their buffering capacity at basic pHs. Nevertheless, the control of the reactivity of LDHs such as HC is necessary to optimize their applications. Here, the reactivity of an HC prepared by a coprecipitation method was modified by its inclusion in calcium alginate (CaAlg) beads prepared by ionic gelation. The obtained beads (CaAlg/HC) showed good dispersion of the HC particles in the alginate matrix and were used to test the acid base reactivity and heavy metal uptake capacity compared with pure CaAlg beads and HC powder separately. The pH buffering capacity of CaAlg beads was enriched by the inclusion of HC that, in turn, was modulated in its reactivity. Thus, the HC dissolution times changed from mere seconds for the powder to tens of minutes when enclosed in the beads in a kinetic profile determined by the diffusive step. On the other hand, Cu2+ uptake capacity of CaAlg/HC beads combined the Cu(OH)2 precipitation capacity of HC with the complexation capacity of alginate, reaching good affinity and capacity for the obtained beads. Nevertheless, the precipitation of the hydroxide was produced outside the bead, which would induce the addition of an additional separation step to produce an acceptable Cu2+ elimination.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gulnur Arabaci ◽  
Ayse Usluoglu

Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153685 ◽  
Author(s):  
Shen-Fu Lin ◽  
Ying-Chen Chen ◽  
Ray-Neng Chen ◽  
Ling-Chun Chen ◽  
Hsiu-O Ho ◽  
...  

2017 ◽  
Vol 324 ◽  
pp. 358-369 ◽  
Author(s):  
Gabriel Salierno ◽  
Mauricio Maestri ◽  
Stella Piovano ◽  
Miryan Cassanello ◽  
María Angélica Cardona ◽  
...  

Biomaterials ◽  
2005 ◽  
Vol 26 (16) ◽  
pp. 3327-3331 ◽  
Author(s):  
Shinji Sugiura ◽  
Tatsuya Oda ◽  
Yasuhiko Izumida ◽  
Yasuyuki Aoyagi ◽  
Mitsuo Satake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document