The Effect of Calcium on the Mechanical Response of Single Twitch Muscle Fibres of Xenopus Laevis

1967 ◽  
Vol 69 (3) ◽  
pp. 242-254 ◽  
Author(s):  
Bernhard Frankenhaeuser ◽  
Jan Lännergren
2001 ◽  
Vol 109 (5) ◽  
pp. 410-417 ◽  
Author(s):  
R.T. Jaspers ◽  
H.M. Feenstra ◽  
M.B.E. Lee-de Groot ◽  
P.A. Huijing ◽  
W.J. van der Laarse

1960 ◽  
Vol s3-101 (53) ◽  
pp. 55-67
Author(s):  
P. R. LEWIS ◽  
A.F. W. HUGHES

A simultaneous coupling azo dye technique has been used to reveal the distribution of cholinesterase activity in the musculature of the developing tadpole of Xenopus laevis. The use of inhibitors and a less convenient but more specific histochernical technique confirmed that only true cholinesterase distribution was being demonstrated; and a study of silver-impregnated material proved that this azo dye technique provides a very convenient method of following the development of the patterns of myo-neural junctions in the striated muscles of this tadpole. A wide variety of patterns is seen in the various muscles: in the axial musculature the muscle-fibres become innervated at their ends from myocommatal plexuses and never acquire endings along their length; broad muscular sheets, as in the walls of the branchial and abdominal cavities, are also first innervated terminally from the septa but later acquire secondary innervation is along the lengths of the fibres. These different patterns of innervation are correlated with the functions of the various types of muscle. It is suggested that terminal innervation may be a special adaptation to permit rapid establishment of neurogenic activity, the pattern of endings of the more usual type forming when the need for precisely co-ordinated reflexogenic activity arises. In some muscles, the azo dye technique reveals a profuse multiple innervation of the fibres which are assumed to be of the so-called ‘slow type’ known to exist in some amphibian muscles.


Since the end of the 1939-45 war, the task of someone trying to understand muscular contraction has become in some respects easier, and in others more difficult. On the credit side, straightforward explanations are now available—and well established—for the main events in neuromuscular transmission, propagation of the action potential, the inward spread of an activating process, chemical activation of the myofibrils, and the sliding filament process of length change. On the other side new properties, new structures and new substances have turned up which cannot yet be fitted into any comprehensive scheme. Further, we are still totally in the dark about the actual molecular processes involved even in those steps for which clear explanations are available at the electrophysiological or electronmicroscopical level. Yet another complication is the extraordinary variety of muscle types that are being discovered, even among such thoroughly studied groups of animals as amphibians and mammals. I have been repeatedly struck by cases where the investigation of muscle has been held up by a false assumption based on the supposition that different kinds of contractile materials must work in the same way. For example, it has often been argued that smooth muscle and striated muscle are essentially similar, and therefore the striations are of only minor importance; this argument was given, for example, by Bernstein (1901, p. 284). The still more general argument that the nature of the ‘contractility’ of muscle should be looked for in the supposedly simpler processes of protoplasmic movement had been the main theme of a book by Verworn (1892). This attitude was, I am sure, one of the main reasons for the almost complete disregard of the striations by physiologists and biochemists between about 1910 and 1950. Again, the elucidation of the slow motor system of certain striated muscle fibres, present in probably all vertebrates, was delayed for many years by the discovery that in mammals even the slow postural activity of limb and trunk muscles is accompanied by propagated action potentials characteristic of fast motor systems. It was widely assumed on this basis that ‘tonic’ contractions in all vertebrate striated muscles consisted of asynchronous twitches or unfused tetani in scattered motor units, and most physiologists came to disregard the numerous indications—physiological and pharmacological (Langley 1913; Sommerkamp 1928; Wachholder & von Ledebur 1930) as well as histological (see Krüger (1952) for references both to his own work in the thirties and to other work)—of the existence of a second, slow, system in skeletal muscles of the frog. The very slow contractions elicited in the familiar gastrocnemius muscle of the frog by stimulating small-diameter motor-nerve fibres (Tasaki & Kano 1942; Tasaki & Mizutani 1944; Tasaki & Tsukagoshi 1944) came as a complete surprise to most physiologists, and received little attention until the matter was taken up by Kufiler and his colleagues (e.g. Kuffler & Vaughan Williams 1953). The astonishing range of structural diversity that becomes apparent when one looks at the arthropods as well as the vertebrates has recently been emphasized by Hoyle (1967).


1964 ◽  
Vol 160 (981) ◽  
pp. 504-512 ◽  

The events and processes that link the electrical events which occur at the surface of a muscle fibre with the contractile process that takes place within the fibre, have been a continuing source of interest. Recently attention has been concentrated on the role played by calcium ions in linking these two events. As often happens in physiological investigations, the idea that calcium ions play an essential role in excitation-contraction coupling is not new. As long ago as 1883 Ringer demonstrated that the frog heart fails to contract and remains relaxed when calcium ions are absent from its perfusion fluid. Later it was shown that under this condition the rhythmic spontaneous action potentials of this preparation are still present in an only slightly modified form (Mines 1913). It was known at that time that the depolarization of the muscle fibre membrane is the electrical event responsible for initiating the mechanical response (Biedermann 1896) and although this point has been disputed from time to time, the evidence presently available makes it obvious that this is the case. One explanation of these observations is that the action potential or depolarization permits or promotes the movement of calcium ions from the surface to the interior of the muscle fibre and that these ions then initiate the mechanical response. A working hypothesis of this type was proposed by Sandow (1952). However, until fairly recently the only direct evidence supporting such an hypothesis was the demonstration by Heilbrunn & Wiercinski (1947) that calcium was the only physiologically occurring cation which would cause shortening when injected into bits of skeletal muscle fibres in low concentrations. This effect was later confirmed under more physiological conditions by Niedergerke (1955). Although there is considerable evidence of recent origin showing that calcium ions play an essential role in coupling in smooth and cardiac muscles, for the sake of brevity attention will be concentrated on skeletal muscle in the present discussion.


Sign in / Sign up

Export Citation Format

Share Document