Activities of Two 9-Deazaguanine Analogue Inhibitors of Purine Nucleoside Phosphorylase, CI-972 and PD 141955, in Vitro and in Vivo

1993 ◽  
Vol 685 (1 Immunomodulat) ◽  
pp. 248-251 ◽  
Author(s):  
R. B. GILBERTSEN ◽  
M. K. DONG ◽  
U. JOSYULA ◽  
J. C. SIRCAR ◽  
D. J. WILBURN ◽  
...  
Blood ◽  
1972 ◽  
Vol 39 (4) ◽  
pp. 522-524 ◽  
Author(s):  
Frank A. Oski ◽  
Harvey J. Sugerman ◽  
Leonard D. Miller

Abstract The relationship between red cell purine nucleoside phosphorylase activity and the ability of stored erythrocytes to regenerate the organic phosphate 2,3-diphosphoglycerate was evaluated in man, monkey, rabbit, dog, cat, and rat. A linear relationship was observed between the activity of this enzyme and the in vitro regeneration of 2,3-diphosphoglycerate from a solution of inosine, pyruvate, and inorganic phosphate. These studies suggest that rabbit and monkey erythrocytes respond in a manner similar to that of human erythrocytes and, therefore, might be useful experimental models for the evaluation of pharmacologic methods for the in vivo alteration of the oxygen-hemoglobin equilibrium curve.


1992 ◽  
Vol 44 (5) ◽  
pp. 996-999 ◽  
Author(s):  
Richard B. Gilbertsen ◽  
Usha Josyula ◽  
Jagadish C. Sircar ◽  
Ml K. Dong ◽  
Wu Wen-Shen ◽  
...  

Gene Therapy ◽  
2000 ◽  
Vol 7 (20) ◽  
pp. 1738-1743 ◽  
Author(s):  
V K Gadi ◽  
S D Alexander ◽  
J E Kudlow ◽  
P Allan ◽  
W B Parker ◽  
...  

1991 ◽  
Vol 178 (3) ◽  
pp. 1351-1358 ◽  
Author(s):  
Richard B. Gilbertsen ◽  
Mi K. Dong ◽  
Lynn M. Kossarek ◽  
Jagadish C. Sircar ◽  
Catherine R. Kostian ◽  
...  

2005 ◽  
Vol 280 (23) ◽  
pp. 22318-22325 ◽  
Author(s):  
Yang Zang ◽  
Wen-Hu Wang ◽  
Shaw-Wen Wu ◽  
Steven E. Ealick ◽  
Ching C. Wang

Trichomonas vaginalis is an anaerobic protozoan parasite that causes trichomoniasis, a common sexually transmitted disease with worldwide impact. One of the pivotal enzymes in its purine salvage pathway, purine nucleoside phosphorylase (PNP), shows physical properties and substrate specificities similar to those of the high molecular mass bacterial PNPs but differing from those of human PNP. While carrying out studies to identify inhibitors of T. vaginalis PNP (TvPNP), we discovered that the nontoxic nucleoside analogue 2-fluoro-2′-deoxyadenosine (F-dAdo) is a “subversive substrate.” Phosphorolysis by TvPNP of F-dAdo, which is not a substrate for human PNP, releases highly cytotoxic 2-fluoroadenine (F-Ade). In vitro studies showed that both F-dAdo and F-Ade exert strong inhibition of T. vaginalis growth with estimated IC50 values of 106 and 84 nm, respectively, suggesting that F-dAdo might be useful as a potential chemotherapeutic agent against T. vaginalis. To understand the basis of TvPNP specificity, the structures of TvPNP complexed with F-dAdo, 2-fluoroadenosine, formycin A, adenosine, inosine, or 2′-deoxyinosine were determined by x-ray crystallography with resolutions ranging from 2.4 to 2.9 Å. These studies showed that the quaternary structure, monomer fold, and active site are similar to those of Escherichia coli PNP. The principal active site difference is at Thr-156, which is alanine in E. coli PNP. In the complex of TvPNP with F-dAdo, Thr-156 causes the purine base to tilt and shift by 0.5 Å as compared with the binding scheme of F-dAdo in E. coli PNP. The structures of the TvPNP complexes suggest opportunities for further improved subversive substrates beyond F-dAdo.


Sign in / Sign up

Export Citation Format

Share Document