Low-Frequency Stimulation Abolishes the High-Frequency Induced Long-Term Effects in Rat Medial Vestibular Nuclei

1996 ◽  
Vol 781 (1 Lipids and Sy) ◽  
pp. 673-676
Author(s):  
SILVAROSA GRASSI ◽  
VITO ENRICO PETTOROSSI ◽  
MAURO ZAMPOLINI
2000 ◽  
Vol 83 (4) ◽  
pp. 2412-2420 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Tatsuya Asai ◽  
Kazuyuki Murase

We investigated the neuronal plasticity in the spinal dorsal horn and its relationship with spinal inhibitory networks using an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the lamina II (the substantia gelatinosa) of the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net neuronal excitation along the slice-depth, was depressed by 28% for more than 1 h after a high-frequency conditioning stimulation of A fibers in the dorsal root (3 tetani of 100 Hz for 1 s with an interval of 10 s). The depression was not induced in a perfusion solution containing an NMDA antagonist,dl-2-amino-5-phosphonovaleric acid (AP5; 30 μM). In a solution containing the inhibitory amino acid antagonists bicuculline (1 μM) and strychnine (3 μM), and also in a low Cl−solution, the excitation evoked by the single-pulse stimulation was enhanced after the high-frequency stimulation by 31 and 18%, respectively. The enhanced response after conditioning was depotentiated by a low-frequency stimulation of A fibers (0.2–1 Hz for 10 min). Furthermore, once the low-frequency stimulation was applied, the high-frequency conditioning could not potentiate the excitation. Inhibitory transmissions thus regulate the mode of synaptic plasticity in the lamina II most likely at afferent terminals. The high-frequency conditioning elicits a long-term depression (LTD) of synaptic efficacy under a greater activity of inhibitory amino acids, but it results in a long-term potentiation (LTP) when inhibition is reduced. The low-frequency preconditioning inhibits the potentiation induction and maintenance by the high-frequency conditioning. These mechanisms might underlie robust changes of nociception, such as hypersensitivity after injury or inflammation and pain relief after electrical or cutaneous stimulation.


2019 ◽  
Vol 116 (13) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xi Chen ◽  
Xiao Li ◽  
Yin Ting Wong ◽  
Xuejiao Zheng ◽  
Haitao Wang ◽  
...  

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK−/−mice lacked neocortical LTP and showed deficits in a cue–cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue–cue associative memory.


1983 ◽  
Vol 58 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Thomas E. Ciesielski ◽  
Yoshitaka Fukuda ◽  
William W. L. Glenn ◽  
Jack Gorfien ◽  
Kathryn Jeffery ◽  
...  

✓ The histological, histochemical, and ultrastructural features of canine diaphragms subjected to pacing by high-frequency electrical stimulation (27 to 33 Hz) of the phrenic nerve are compared with unstimulated diaphragms and with diaphragms subjected to pacing by low-frequency stimulation (11 to 13 Hz). The high-frequency group showed a reduced tidal volume (fatigue) after long-term stimulation, and myopathic changes which included enlarged internal and sarcolemmal nuclei, ring fibers, moth-eaten fibers with irregular histochemical staining, core/targetoid fibers, and smearing and aggregation of Z-band material with electron microscopy. The low-frequency group did not develop a significant degree of fatigue or pathological changes, and showed histochemical evidence of transformation to fast-twitch (type II) fibers. Possible pathogenic mechanisms and their similarity to those in certain human neuromuscular diseases are discussed. The application of the findings resulting from high- and low-frequency stimulation to long-term diaphragm pacing in humans with chronic ventilatory insufficiency is also discussed.


2004 ◽  
Vol 92 (6) ◽  
pp. 3332-3337 ◽  
Author(s):  
Jens Ellrich

Long-term depression (LTD) of somatosensory processing has been demonstrated in slice preparations of the spinal dorsal horn. Although LTD could be reliably induced in vitro, inconsistent results were encountered when the same types of experiments were conducted in adult animals in vivo. We addressed the hypothesis that LTD of orofacial sensorimotor processing can be induced in mice under general anesthesia. The effects of electric low- and high-frequency conditioning stimulation of the tongue on the sensorimotor jaw-opening reflex (JOR) elicited by electric tongue stimulation were investigated. Low-frequency stimulation induced a sustained decrease of the reflex integral for ≥1 h after the end of conditioning stimulation. After additional high-frequency stimulation, the reflex partly recovered from LTD. High-frequency stimulation alone induced a transient increase of the JOR integral for <10 min. The LTD of the sensorimotor jaw-opening reflex in anesthetized mice may be an appropriate model to investigate the central mechanisms and the pharmacology of synaptic plasticity in the orofacial region. The application of electrophysiological techniques in mice provides the opportunity to include adequate knock-out models to elucidate the neurobiology of LTD.


1957 ◽  
Vol 40 (3) ◽  
pp. 435-450 ◽  
Author(s):  
David P. C. Lloyd

An assemblage of individual motoneurons constituting a synthetic motoneuron pool has been studied from the standpoint of relating monosynaptic reflex responses to frequency of afferent stimulation. Intensity of low frequency depression is not a simple function of transmitter potentiality. As frequency of stimulation increases from 3 per minute to 10 per second, low frequency depression increases in magnitude. Between 10 and approximately 60 per second low frequency depression apparently diminishes and subnormality becomes a factor in causing depression. At frequencies above 60 per second temporal summation occurs, but subnormality limits the degree of response attainable by summation. At low stimulation frequencies rhythm is determined by stimulation frequency. Interruptions of rhythmic firing depend solely upon temporal fluctuation of excitability. At high frequency of stimulation rhythm is determined by subnormality rather than inherent rhythmicity, and excitability fluctuation leads to instability of response rhythm. In short, whatever the stimulation frequency, random excitability fluctuation is the factor disrupting rhythmic response. Monosynaptic reflex response latency is stable during high frequency stimulation as it is in low frequency stimulation provided a significant extrinsic source of random bombardment is not present. In the presence of powerful random bombardment discharge may become random with respect to monosynaptic afferent excitation provided the latter is feeble. When this occurs it does so equally at low frequency and high frequency. Thus temporal summation is not a necessary factor. There is, then, no remaining evidence to suggest that the agency for temporal summation in the monosynaptic system becomes a transmitting agency in its own right.


1996 ◽  
Vol 75 (2) ◽  
pp. 877-884 ◽  
Author(s):  
P. T. Huerta ◽  
J. E. Lisman

1. The induction of long-term weakening of synaptic transmission in rat hippocampal slices was examined in CA1 synapses during cholinergic modulation. 2. Bath application of the cholinergic agonist carbachol (50 microM) activated an oscillation of the local field potential in the theta-frequency range (5-12 Hz), termed theta. It was previously shown that a stimulation train of 40 single shocks (at 0.1 Hz) to the Schaffer collateral-commisural afferents, each synchronized with positive peaks of theta, caused homosynaptic long-term enhancement in CA1. Furthermore, long-term depression (LTD) was sporadically observed when the stimulation train was given at negative troughs of theta. Here we have sought to determine stable conditions for LTD induction during theta. 3. Synaptic weakening was reliably obtained, by giving 40 shocks (at 0.1 Hz) at theta-troughs, only in pathways that had been previously potentiated. This decrement, termed theta-LTD, was synapse specific because it did not occur in an independent pathway not stimulated during theta. The interval between the initial potentiating tetanus and theta-LTD induction could be as long as 90 min. 4. theta-LTD could be saturated; after consecutive episodes of theta-LTD induction, no significant further depression was obtained. Moreover, theta-LTD could be reversed by tetanic stimulation. 5. theta-LTD could prevent the induction of LTD by 600-900 pulses at 1 Hz. This suggests that the two protocols may share common mechanisms at the synaptic level. 6. We conclude that single presynaptic spikes that occur at low frequency and are properly timed to the troughs of theta may be a relevant mechanism for decreasing the strength of potentiated synapses.


Author(s):  
Dirk Pette

An inspiring scientific cooperation has come to an end, when Gerta Vrbová, an internationally renowned researcher in the field of neuromuscular interactions, passed away on October 2, 2020. Comparative EMG studies had led Gerta to suggest that different contractile properties of fast- and slow-twitch muscle fibers relate to specific firing patterns of their motoneurones. In support of her hypothesis, long term stimulation of fast-twitch muscles with a stimulus pattern resembling that of slow motoneurones, were shown to induce a pronounced fast-to-slow shift in contractile properties. In our cooperation which started in 1970, and also in cooperation with others, Gerta's experiment proved to be an ideal model for the study of neurally controlled changes in phenotype characteristics at various levels of molecular and cellular organization, their time courses and ranges. It has become most important in basic research on the adaptive potential or plasticity of muscle.


Sign in / Sign up

Export Citation Format

Share Document