edge probability
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shanshan Gao ◽  
Ningning Guo ◽  
Deqian Mao

Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is fuzzy, and some of the tongue is interfered by pathological details. The existing segmentation methods are often not ideal for tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the evolution force of the energy function, symmetry detection constraints are added to the evolution model. Combined with the latest convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop function, so as to achieve accurate and automatic tongue segmentation. The experimental results show that the input tongue image is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of robustness and accuracy.


2021 ◽  
Vol 76 (3) ◽  
Author(s):  
Yilun Shang

AbstractIn this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph $$K_n$$ K n independently with probability $$p_n(e)$$ p n ( e ) . Each vertex is independently assigned an initial state $$+1$$ + 1 (with probability $$p_+$$ p + ) or $$-1$$ - 1 (with probability $$1-p_+$$ 1 - p + ), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if $$p_+$$ p + is smaller than a threshold, then G will display a unanimous state $$-1$$ - 1 asymptotically almost surely, meaning that the probability of reaching consensus tends to one as $$n\rightarrow \infty $$ n → ∞ . The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph $$p_+$$ p + can be near a half, while in a sparse random graph $$p_+$$ p + has to be vanishing. The size of a dynamic monopoly in G is also discussed.


Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .


2018 ◽  
Vol 10 (9) ◽  
pp. 1496 ◽  
Author(s):  
Tingting Lu ◽  
Dongping Ming ◽  
Xiangguo Lin ◽  
Zhaoli Hong ◽  
Xueding Bai ◽  
...  

As the basic feature of building, building edges play an important role in many fields such as urbanization monitoring, city planning, surveying and mapping. Building edges detection from high spatial resolution remote sensing (HSRRS) imagery has always been a long-standing problem. Inspired by the recent success of deep-learning-based edge detection, a building edge detection model using a richer convolutional features (RCF) network is employed in this paper to detect building edges. Firstly, a dataset for building edges detection is constructed by the proposed most peripheral constraint conversion algorithm. Then, based on this dataset the RCF network is retrained. Finally, the edge probability map is obtained by RCF-building model, and this paper involves a geomorphological concept to refine edge probability map according to geometric morphological analysis of topographic surface. The experimental results suggest that RCF-building model can detect building edges accurately and completely, and that this model has an edge detection F-measure that is at least 5% higher than that of other three typical building extraction methods. In addition, the ablation experiment result proves that using the most peripheral constraint conversion algorithm can generate more superior dataset, and the involved refinement algorithm shows a higher F-measure and better visual effect contrasted with the non-maximal suppression algorithm.


2018 ◽  
Vol 07 (03) ◽  
pp. 1850007
Author(s):  
O. Khorunzhiy

We consider the ensemble of [Formula: see text] real random symmetric matrices [Formula: see text] obtained from the determinant form of the Ihara zeta function associated to random graphs [Formula: see text] of the long-range percolation radius model with the edge probability determined by a function [Formula: see text]. We show that the normalized eigenvalue counting function of [Formula: see text] weakly converges in average as [Formula: see text], [Formula: see text] to a unique measure that depends on the limiting average vertex degree of [Formula: see text] given by [Formula: see text]. This measure converges in the limit of infinite [Formula: see text] to a shift of the Wigner semi-circle distribution. We discuss relations of these results with the properties of the Ihara zeta function and weak versions of the graph theory Riemann Hypothesis.


2018 ◽  
Vol 55 (2) ◽  
pp. 325-352 ◽  
Author(s):  
Bruce Hajek ◽  
Yihong Wu ◽  
Jiaming Xu

Abstract Community detection is considered for a stochastic block model graph of n vertices, with K vertices in the planted community, edge probability p for pairs of vertices both in the community, and edge probability q for other pairs of vertices. The main focus of the paper is on weak recovery of the community based on the graph G, with o(K) misclassified vertices on average, in the sublinear regime n1-o(1) ≤ K ≤ o(n). A critical parameter is the effective signal-to-noise ratio λ = K2(p - q)2 / ((n - K)q), with λ = 1 corresponding to the Kesten–Stigum threshold. We show that a belief propagation (BP) algorithm achieves weak recovery if λ > 1 / e, beyond the Kesten–Stigum threshold by a factor of 1 / e. The BP algorithm only needs to run for log*n + O(1) iterations, with the total time complexity O(|E|log*n), where log*n is the iterated logarithm of n. Conversely, if λ ≤ 1 / e, no local algorithm can asymptotically outperform trivial random guessing. Furthermore, a linear message-passing algorithm that corresponds to applying a power iteration to the nonbacktracking matrix of the graph is shown to attain weak recovery if and only if λ > 1. In addition, the BP algorithm can be combined with a linear-time voting procedure to achieve the information limit of exact recovery (correctly classify all vertices with high probability) for all K ≥ (n / logn) (ρBP + o(1)), where ρBP is a function of p / q.


2018 ◽  
Vol 27 (5) ◽  
pp. 741-762 ◽  
Author(s):  
OLIVER COOLEY ◽  
MIHYUN KANG ◽  
YURY PERSON

In this paper we considerj-tuple-connected components in randomk-uniform hypergraphs (thej-tuple-connectedness relation can be defined by letting twoj-sets be connected if they lie in a common edge and considering the transitive closure; the casej= 1 corresponds to the common notion of vertex-connectedness). We show that the existence of aj-tuple-connected component containing Θ(nj)j-sets undergoes a phase transition and show that the threshold occurs at edge probability$$\frac{(k-j)!}{\binom{k}{j}-1}n^{j-k}.$$Our proof extends the recent short proof for the graph case by Krivelevich and Sudakov, which makes use of a depth-first search to reveal the edges of a random graph.Our main original contribution is abounded degree lemma, which controls the structure of the component grown in the search process.


2018 ◽  
Vol 27 (2) ◽  
pp. 649-664 ◽  
Author(s):  
Deepak Mishra ◽  
Santanu Chaudhury ◽  
Mukul Sarkar ◽  
Arvinder Singh Soin ◽  
Vivek Sharma

10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


Sign in / Sign up

Export Citation Format

Share Document