scholarly journals Sparse Graphs Usually Have Exponentially Many Optimal Colorings

10.37236/1643 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Krivelevich

A proper coloring of a graph $G=(V,E)$ is called optimal if the number of colors used is the minimal possible; i.e., it coincides with the chromatic number of $G$. We investigate the typical behavior of the number of distinct optimal colorings of a random graph $G(n,p)$, for various values of the edge probability $p=p(n)$. Our main result shows that for every constant $1/3 < a < 2$, most of the graphs in the probability space $G(n,p)$ with $p=n^{-a}$ have exponentially many optimal colorings.

2018 ◽  
Vol 10 (04) ◽  
pp. 1850045
Author(s):  
Hongping Ma ◽  
Xiaoxue Hu ◽  
Jiangxu Kong ◽  
Murong Xu

An [Formula: see text]-hued coloring is a proper coloring such that the number of colors used by the neighbors of [Formula: see text] is at least [Formula: see text]. A linear [Formula: see text]-hued coloring is an [Formula: see text]-hued coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list [Formula: see text]-hued chromatic number, denoted by [Formula: see text], of sparse graphs. It is clear that any graph [Formula: see text] with maximum degree [Formula: see text] satisfies [Formula: see text]. Let [Formula: see text] be the maximum average degree of a graph [Formula: see text]. In this paper, we obtain the following results: (1) If [Formula: see text], then [Formula: see text] (2) If [Formula: see text], then [Formula: see text]. (3) If [Formula: see text], then [Formula: see text].


2009 ◽  
Vol 19 (1) ◽  
pp. 87-98 ◽  
Author(s):  
ROSS J. KANG ◽  
COLIN McDIARMID

We consider the t-improper chromatic number of the Erdős–Rényi random graph Gn,p. The t-improper chromatic number χt(G) is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most t. If t = 0, then this is the usual notion of proper colouring. When the edge probability p is constant, we provide a detailed description of the asymptotic behaviour of χt(Gn,p) over the range of choices for the growth of t = t(n).


2021 ◽  
Vol 76 (3) ◽  
Author(s):  
Yilun Shang

AbstractIn this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph $$K_n$$ K n independently with probability $$p_n(e)$$ p n ( e ) . Each vertex is independently assigned an initial state $$+1$$ + 1 (with probability $$p_+$$ p + ) or $$-1$$ - 1 (with probability $$1-p_+$$ 1 - p + ), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if $$p_+$$ p + is smaller than a threshold, then G will display a unanimous state $$-1$$ - 1 asymptotically almost surely, meaning that the probability of reaching consensus tends to one as $$n\rightarrow \infty $$ n → ∞ . The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph $$p_+$$ p + can be near a half, while in a sparse random graph $$p_+$$ p + has to be vanishing. The size of a dynamic monopoly in G is also discussed.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Brice Effantin ◽  
Hamamache Kheddouci

International audience The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.


2018 ◽  
Vol 5 (2) ◽  
pp. 11-15
Author(s):  
Aaresh R.R ◽  
Venkatachalam M ◽  
Deepa T

Dynamic coloring of a graph G is a proper coloring. The chromatic number of a graph G is the minimum k such that G has a dynamic coloring with k colors. In this paper we investigate the dynamic chromatic number for the Central graph, Middle graph, Total graph and Line graph of Web graph Wn denoted by C(Wn), M(Wn), T(Wn) and L(Wn) respectively.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


Sign in / Sign up

Export Citation Format

Share Document