Author response for "Measuring causality between collaborative and individual gaze metrics for collaborative problem‐solving with intelligent tutoring systems"

Author(s):  
Kshitij Sharma ◽  
Jennifer K. Olsen ◽  
Vincent Aleven ◽  
Nikol Rummel
Author(s):  
Alla Anohina

The paper focuses on the issues of providing an adaptive support for learners in intelligent tutoring systems when learners solve practical problems. The results of the analysis of support policies of learners in the existing intelligent tutoring systems are given and the revealed problems are emphasized. The concept and the architectural parts of an intelligent tutoring system are defined. The approach which provides greater adaptive abilities of systems of such kind offering two modes of problem-solving and using a two-layer model of hints is described. It is being implemented in the intelligent tutoring system for the Minimax algorithm at present. In accordance with the proposed approach the learner solves problems in the mode which is the most appropriate for him/her and receives the most suitable hint.


2019 ◽  
Vol 4 (9) ◽  
pp. 202-206
Author(s):  
Hieu Trong Bui

It is wide known that one of the most effective ways to learn is through problem solving. In recent years, it is widely known that problem solving is a central subject and fundamental ability in the teaching and learning. Besides, problem solving is integrated in the STEM+C (Science, Technology, Engineering, and Math plus Computing, Coding or Computer Science) fields. Intelligent tutoring systems (ITSs) have been shown to be effective in supporting students' domain-level learning through guided problem solving practice. Intelligent tutoring systems provide personalized feedback (in the form of hints) to students and improve learning at effect sizes approaching that of human tutors. However, creating an ITS to adapt to individual students requires the involvement of experts to provide knowledge about both the academic domain and novice student behavior in that domain’s curriculum. Creating an ITS requires time, resources, and multidisciplinary skills. Because of the large possible range of problem solving behavior for any individual topic, the amount of expert involvement required to create an effective, adaptable tutoring system can be high, especially in open-ended problem solving domains. Data-driven ITSs have shown much promise in increasing effectiveness by analyzing past data in order to quickly generate hints to individual students. However, the fundamental long term goal was to develop “better, faster, and cheaper” ITSs. In this work, the main goal of this paper is to: 1) present ITSs used in the STEM+C education; and 2) introduce data-driven ITSs for STEM+C education.


2019 ◽  
Vol 4 (9) ◽  
pp. 37-40
Author(s):  
Bui Trong Hieu ◽  
Bui Thi Kim Uyen

Scientific inquiry skills is used in all educational areas. In the context of microeconomics, it is widely known that the development of scientific inquiry skills is central to the construction of ideas that enable understanding. Intelligent tutoring systems (ITSs) have been shown to be effective in supporting students' domain-level learning through guided problem solving practice. ITSs provide personalized feedback (in the form of hints) to students and improve learning at effect sizes approaching that of human tutors. However, creating an ITS to adapt to individual students requires the involvement of experts to provide knowledge about both the academic domain and novice student behavior in that domain’s curriculum. Creating an ITS requires time, resources, and multidisciplinary skills. Because of the large possible range of problem solving behavior for any individual topic, the amount of expert involvement required to create an effective, adaptable tutoring system can be high, especially in open-ended problem solving domains. Data-driven ITSs have shown much promise in increasing effectiveness by analyzing past data in order to quickly generate hints to individual students. However, the fundamental long term goal was to develop “better, faster, and cheaper” ITSs. The main goal of this paper is to: 1) presents ITSs used in the microeconomics education; and 2) introduce data-driven ITSs for microeconomics education.  


Sign in / Sign up

Export Citation Format

Share Document