Fracture resistance of thin wall endodontically treated teeth without ferrules restored with various techniques

Author(s):  
Ravivan Iemsaengchairat ◽  
Juthatip Aksornmuang
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2251
Author(s):  
Maciej Zarow ◽  
Marzena Dominiak ◽  
Katarzyna Szczeklik ◽  
Louis Hardan ◽  
Rim Bourgi ◽  
...  

Various material properties are involved in the success of endodontically treated restorations. At present, restorative composites are commonly employed as core build-up materials. This study aimed to systematically review the literature to assess the effect of using composite core materials on the in vitro fracture of endodontically treated teeth. Two different reviewers screened the literature, up to June 2021, in five distinct electronic databases: PubMed (MedLine), Scopus, Scielo, ISI Web of Science, and EMBASE. Only in vitro studies reporting the effect of the use of composite core materials on the fracture resistance of endodontically treated teeth were included. A meta-analysis was carried out using a software program (Review Manager v5.4.1; The Cochrane Collaboration, Copenhagen, Denmark). The risk of bias in each study was assessed following the parameters of another systematic review. A total of 5016 relevant papers were retrieved from all databases. After assessing the title and abstract, five publications remained for qualitative analysis. From these, only three studies remained for meta-analysis. The fracture strength of endodontically treated teeth where a core build-up composite was used was statistically significantly higher than the control (p = 0.04). Most of the analyses showed a high heterogenicity. The in vitro evidence suggests that the composite core build-up with higher filler content tended to improve the fracture resistance of the endodontically treated teeth, in comparison with conventional composite resins. This research received no external funding. Considering that this systematic review was only carried out on in vitro papers, registration was not performed. Furthermore, there were no identified clinical studies assessing core build-up materials; therefore, more well-designed research on these materials is needed.


2015 ◽  
Vol 03 (02) ◽  
pp. 080-084
Author(s):  
Vijay Singh ◽  
Poonam Bogra ◽  
Saurabh Gupta ◽  
Navneet Kukreja ◽  
Neha Gupta

AbstractFracture resistance of endodontically treated teeth restored with post. Aims: This study aims to compare the fracture resistance of endodontically treated teeth restored with resin fiber and stainless steel post. Commercially available prefabricated resin fiber post(Dentsply Maillefer Easy Post), prefabricated stainless steel post(Coltene/Whaledent Parapost) were used. Methods and Material: Forty five maxillary central incisors were obturated and divided into 3 groups: Control Group (Group I) without any post (n = 15), Resin Fiber Post Group (Group II) (n = 15) and Stainless Steel Post Group (Group III) (n = 15). In all Groups except control group, post space was prepared; a post was cemented, and a core build-up was provided. All the specimens were subjected to compressive force under a universal testing machine until fracture. Statistical analysis used: The results were analyzed using the variable analysis test (ANOVA). Results: One-way analysis of variance revealed significant difference among test groups. The control group demonstrated highest fracture resistance (925.2183 N), followed by the resin fiber post group (486.7265 N) and stainless steel post group (423.539N). Conclusions: Teeth restored with resin fiber post showed higher fracture resistance values than prefabricated stainless steel post.


2017 ◽  
Vol 7 (2) ◽  
pp. 97-102
Author(s):  
Sabita M Ram ◽  
Naisargi Shah ◽  
Amit M Gaikwad

ABSTRACT Aim To comparatively evaluate the fracture resistance of endodontically treated teeth restored with light-cured composite resin core using two different designs of prefabricated metal posts. Materials and methods A total of 30 single-rooted anterior teeth were selected for the study and endodontically treated. Teeth were sectioned 2 mm above the cementoenamel junction and were randomly divided into two groups (n = 15). Teeth in group I were restored with Parallel post—EG post and group II with parallel post with coronal flare—i post. Light-cured composite core buildup was done in all samples using a customized core former. Compressive load was applied at a 135° angle to the long axis of the tooth at a cross-head speed of 1 mm/minute until visible signs of fracture were observed. Levene's test and t-test were used to determine the difference of the failure loads between the groups (α = 0.05). Results The mean values (standard deviation [SD]) for fracture resistance were 295.55 N and 469.59 N for parallel post—EG post and parallel post with coronal flare—i post respectively. Since the p-value for the t-test is less than 0.05, it indicates that we should reject null hypothesis and conclude that the mean fracture load of parallel post with coronal flare—i post is significantly more than that of mean fracture load of parallel post—EG post. Conclusion The study conducted evaluated that the fracture resistance of endodontically treated teeth with parallel post with coronal flare—i post and core buildup had better strength as compared with parallel post—EG post and core buildup. Clinical significance The present study will help the clinician to select the appropriate prefabricated metal post that will fit exactly into the coronal flare of the canal improving clinical performance, thus increasing the longevity of the restoration. How to cite this article Gaikwad AM, Shah N, Ram SM. A Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth restored with Composite Resin Core using Two Different Designs of Prefabricated Metal Posts: An in vitro Study. J Contemp Dent 2017;7(2):97-102.


Sign in / Sign up

Export Citation Format

Share Document